# Master's thesis

Jon Bro Flak

Sequencing and Electrophysiological Characterization of the Repolarizing KCNQ1 Channel Found in the Equine Heart



Academic advisors:

Professor M.D. Dan Arne Klærke & Ph-D student, DVM Philip J. Pedersen

Submitted: 05/08/13

| Institute:          | Institute for Clinical Veterinary and Animal Science |
|---------------------|------------------------------------------------------|
| Name of department: | Department of Physiology                             |
| Author):            | Jon Bro Flak                                         |

Title and possible Subtitle: Sequencing and Electrophysiological Characterization of the Repolarizing KCNQ1 Channel Found in the Equine Heart

Front page illustration: a graphic model of a DNA double helix highlighting a mutation site adapted from (IO9 2013)

## **Preface**

This project is my master's thesis done as part of the master in veterinary medicine at the University of Copenhagen. The project is also done in close collaboration with the Ph-D project of Philip J. Pedersen. In the broader perspective the goal of the project is to help identify reasons for cardiac death in horses and to gain better understanding of the ion channels and their function in the equine heart. This will be done by mapping the  $I_{kr}$  and  $I_{ks}$  channels including their sub units, and expressing them in *Xenopus* oocytes to measure their function and responses to certain potentially pro-arrhythmic drugs.

In this particular study the KCNQ1 and KCNE1 and 2 are in focus as they were the ones that the most information could be ascertained about through PCR.

I would like to give thanks to the laboratory technicians of the department, and special thanks to my supervisors Dan A. Klærke, and Philip J. Pedersen who were always willing to help and give advice and along with all members of the department create a good work atmosphere.

And to my pregnant wife and my daughter: All my love for enduring my frequent absence during this project.

# Abstract

Sudden death (SD) in horses is a great problem in equine athletics. In up to 22% of SD there is never found an underlying pathological cause, raising the question if there is a molecular basis to these cases of SD. In this study PCR was utilized to find parts of the equine sequences of KCNQ1, and KCNE1. The entire equine CDS of KCNQ1, KCNH2, KCNE1 and KCNE2 (with a few assumptions) was then individually analyzed by comparison to their human counterparts via BLAST, both nucleotide and protein sequences. It was especially investigated if there were any registered human LQTS mutations present in the equine sequences. KCNQ1 contained 3 protein dissimilarities identical to human mutations and a few more at same sites. KCNE1 also had human mutations present. KCNH2 had only one protein dissimilarity 1bp adjacent to a registered human mutation linked to LQT2. KCNE2 had only 3 such adjacencies. The conclusion to this is that the equine I<sub>Ks</sub> current might be different from the human, whereas the I<sub>Kr</sub> might be a good human homologue. The mutation analysis also gives good reason to believe there might be an equine form of LQTS, and emphasizes the need for drug studies for equine specific drugs.

KCNQ1, KCNE1 and KCNE2 were synthesized from the data we had, and attempted sub cloned in to a p-Xoom vector. This was however not achieved within the duration of this project. Therefor expression in *Xenopus* oocytes was not achieved either.

# **Table of Contents**

| Preface                               | 2  |
|---------------------------------------|----|
| Abstract                              | 2  |
| Theoretical Background                | 4  |
| Sudden Death in Horses                | 4  |
| The Cardiac Action Potential          | 4  |
| Channel Structure and Composition     | 5  |
| Long QT Syndrome                      | 6  |
| Methods                               | 8  |
| Bioinformatics                        | 8  |
| PCR                                   | 8  |
| Sequencing                            | 10 |
| Ligation, Transformation and Cloning: | 10 |
| Plasmid Purification:                 | 11 |
| Gene Synthesis and Sub Cloning        | 11 |
| Results                               | 13 |
| PCR and Sequencing                    | 13 |
| Subcloning                            | 13 |
| Gene Analysis                         | 14 |
| Conclusion                            | 16 |
| Discussion                            | 17 |
| References                            | 19 |
| Appendices                            | 21 |
| Apendix I Primers used                | 21 |
| Apendix II KCNQ1                      | 22 |
| Apendix III KCNH2                     | 26 |
| Apendix IV KCNE1                      | 32 |
| Apendix V KCNE2                       | 33 |
|                                       |    |

# **Theoretical Background**

#### **Sudden Death in Horses**

Sudden Death (SD) is a well-known problem in equine athletics. A retrospective study has been made to identify the causes of sudden death during or soon after exercise. A great proportion, up to 22% had no apparent cause despite a thorough post mortem pathological examination. (Lyle, Turley et al. 2010, Lyle, Uzal et al. 2011)

One study found histopathological similarities in 5 SD horses. 3 lesions were apparent in all 5 cases: Atrial myocardial fibrosis near the SA node, sclerotic vascular changes of the AV and SA node arteries, and fibroplastic and/or fibrotic lesions in the upper portion of the interventricular septum. These lesions were comparable with the fact that they showed cardiac symptoms at death. One horse even had perimortal ECG readings showing supra ventricular premature complexes and ventricular premature complexes up until ventricular fibrilation and subsequent death. However the mechanism for these changes, and the other unexplained equine exercise related deaths demand further research. (Kiryu, Machida et al. 1999)

A reason for the missing cause of death in many cases of SD in horses is not only due to the fact that no pathological anomalies are found, in most cases it is due to no post mortem examination at all. The data processed in the articles is mainly derived from racing associations' databases, and not all racing jurisdictions require mandatory post mortem examinations. This does however not invalidate the data given in this study in any way. Furthermore in cases where post mortem examination is performed the necropsy will only detect macroscopic changes, and perform histology when indicated or suspected. In the cases of arrhythmogenic heart failure there may not be any macro- or histo-pathological anomalies, so to do molecular testing, to dig deeper, it is necessary to understand the underlying electrophysiological mechanisms of the equine action potential.

#### **The Cardiac Action Potential**

The heart functions by sequentially triggering different ion channels through a single heartbeat; this



Figure 1: An overview of the channels involved at the different phases in the cardiac action potential. Adapted from Wikimedia commons

sequence is known as the action potential. The action potential can be divided into 5 phases (0-4) depending on what channels are active (fig1). Phase 0 is characterized by the rapid influx of sodium which depolarizes the cell membrane from approximately -90 to > +20mV. Phase 1 is a quick partial repolarization, a result of outward flow of potassium. Phase 2 also known as the plateau phase is an equilibrium between several channels, notably inward calcium, outward potassium and calcium sodium exchange channels. Phase 3 initiates as the inward calcium flow ends leaving the outward potassium flow dominate returning the cell to its resting potential of -90mV, thus starting Phase 4 where inward rectifier potassium channels keep the myocyte at its resting potential. (Nerbonne and Kass 2005)

Each channel in the heart cell membrane serves a specific purpose in the action potential. The  $I_{Ks}$  and  $I_{Kr}$  channels are responsible for the transport of potassium ions out of the cell in the phases 2-3, and their main constituents are KCNQ1 and KCNH2 respectively. (Nerbonne and Kass 2005)

## **Channel Structure and Composition**

Most Potassium channels consist of 4 identical protein sub units comprising a homotetramer, and generally exist in 2 types based on the number of trans-membrane helices each subunit contains. The channels KscA(*Streptomyces Lividans*) which has 2 trans-membrane helices, and Shaker(*Drosophila Melanogaster*), 6 helices, lay the foundation for most of the knowledge there is about potassium channels. Shaker is the one most often compared to, since mammalian potassium channels have 6 trans-membrane helices. (Doyle, Morais et al. 1998) In addition, certain K channels, the socalled two-pore-channels consist of two subunits with each 4 transmembrane segments.

Potassium channels have what is known as a signature sequence of 8 amino acids (TXXTXGYG), where X is a random amino acid. This is also the selectivity filter which is responsible for the channels' extremely high affinity for potassium ions. In one study mutagenesis was used to examine how changes in the signature sequence would affect the channels kinetics. Some amino acid substitutions were tolerated without changing the affinity remarkably, while others ruined the function of the channel. (Heginbotham, Lu et al. 1994)

## KCNQ1 and KCNE1

KCNQ1, formerly known as KvLQT1, was originally found and named due to its implication in the hereditary disease complex of Long QT Syndrome (LQTS). LTQS was at the time known to come in chromosome linked variants. KCNQ1 was thus found as the Chromosome-11 associated LQTS gene through positional cloning. KCNQ1 is classified as a voltage dependent delayed rectifier and is active during phase 2-3. (Wang, Curran et al. 1996)

KCNQ1 only forms the  $\alpha$  sub unit of I<sub>Ks</sub>. For it to yield the same current and function it needs to be coexpressed with the  $\beta$  sub unit made up from the gene KCNE1. Together they form the functional KCNQ1 channel, which is partly responsible for repolarization of the cardiac action potential (Sanguinetti, Curran et al. 1996)

A study has shown that the co-expression of these two sub units, at least in *Xenopus Laevus* oocytes, is transitory in the sense that KCNE1 presence in the cell membrane dwindles over time. The study described it as a "kiss and go" effect that 10 days in to the experiment left the  $\alpha+\beta$  oocytes' electrical currents indistinguishable from the  $\alpha$  oocytes' suggesting that the  $\beta$  sub unit is synthesized and transported to the outer cell membrane separately and may be involved in regulation of the KCNQ1 function. (Poulsen and Klaerke 2007)



Figure 2: A simplified schematic of the  $\alpha$  sub units of I<sub>Kr</sub> and I<sub>Ks</sub> left to right. The colored dots mark mutation sites related to LQT2 and LQT1 respectively as adapted from (Nerbonne and Kass 2005)

#### KCNH2 and KCNE2

KCNH2 is the main component of the  $I_{Kr}$  current and is also known as the Ether-a-go-go Related Gene or ERG, in humans this becomes hERG. (Warmke and Ganetzky 1994) KCNH2 is, like KCNQ1, a voltage dependent delayed rectifier, but mostly active in Phase 3. The reason for the later activation is that KCNH2 has a dual gating mechanism, which consists of an activation gate and an inactivation gate positioned on the intra- and extracellular sides of the membrane respectively. Both gates must be open for potassium current to flow. The gates react to the same changes in membrane potential but in different ways. The activation gate opens on depolarization and closes on repolarization, and vice versa for the inactivation gate. However the inactivation gate responds faster to the change in membrane potential opening it a fraction of time before the activation gate can close. This potentiates the already ongoing repolarization during phase 3 of the action potential. (Witchel, Milnes et al. 2002) The  $\beta$  sub unit KCNE2 is thought to be coexpressed with the ERG channel in order to regulate the  $I_{Ks}$  current. (Nerbonne and Kass 2005)

KCNH2 was until its discovery known as Chromosome-7 linked LQTS gene and is like KCNQ1 partly responsible for the repolarization of the cardiac action potential.

#### Long QT Syndrome

LQTS is a condition that puts a patient at significant risk of syncope and/or sudden death. It is diagnosed weighted on multiple criteria of which a long QT interval is one. The diagnosis is also based on patient and/or family history of syncope or sudden death. Another ECG finding relevant for the diagnosis of LTQS is Torsades de Pointes arrhythmias. LQTS comes both as an acquired form and a congenital. The acquired form is usually due to illicit or prescribed drug use, ischemic injury or other mechanical malformations in



the heart. The congenital form is related to 12 different genes (LQT1 -12). Of these genes KCNH2 and KCNQ1 are the most important. (Hedley, Jorgensen et al. 2009)

Figure 3: An ECG showing Torsades de Pointes adapted from (Tan, Hou et al. 1995)

In humans, one study claims that KCNQ1 accounts for more than 50% of the congenital cases of LQTS, LQT1. (Wang, Curran et al. 1996) KCNH2 is also related to a congenital form; LQT2, but is more known for its high sensitivity to a variety of drugs inducing an acquired LQT2.(Sanguinetti, Jiang et al. 1995) KCNH2 may account for up to 45% of congenital LTQS cases.(Splawski, Shen et al. 2000) The main focus of this project will be on these 2 genes as they are some of the major contributors to LQTS in the human population.

KCNE1 and KCNE2 are linked to the hereditary forms of LQTS: LQT5 and LQT6 respectively(Hedley, Jorgensen et al. 2009)

Both KCNQ1 and KCNH2 and their sub units of the KCNE family have been found in equine heart tissue via immunoblotting and RT-PCR. The same study measured electrophysiological currents similar to those of human homologues, suggesting that the repolarization mechanisms of the equine heart are also susceptible to LQTS. (Finley, Li et al. 2002)



Figure 4: A graphic presentation showing the ECG and the action potential along the same time axis. Adapted from(Tan, Hou et al. 1995)

# **Methods**

#### **Bioinformatics**

NCBI'S Basic Local Alignment Tool (BLAST) was used for all nucleotide and peptide searches pertaining to sequencing results, inter species comparison and primer design. <u>http://blast.ncbi.nlm.nih.gov\_All BLAST's</u> will have equine sequence as query and human sequence as subject.

The NCBI database ClinVar: <u>http://www.ncbi.nlm.nih.gov/clinvar</u> and the web site: <u>http://www.fsm.it/cardmoc/</u> were used for looking up registered human missense mutations related to KCNQ1, which were then compared to the equine sequence we had obtained. Frame shift and silent mutations were considered irrelevant to this study.

The TMHMM 2.0 tool: <u>http://www.cbs.dtu.dk/services/TMHMM/</u> was used for predicting membrane topology of the found equine sequences so it could be compared to what is known about their human homologues.

Primers were designed using OligoCalc at: <u>http://www.basic.northwestern.edu/biotools/oligocalc.html</u> with the only modification from pre fixed settings that the concentration of primer is 500 nM instead of the 50 nM. The primers 67 and 68 (appendix I) were designed by me during this project and were designed to have an annealing temperature around 60°C, not be much longer than 20bp, as low GC% as possible, no more than 3 (2 is better) repeating C's or G's e.g. CCC or GGG and to end in a single G or C. All primers were tested for hairpin and auto-dimerization formation and judged usable if the pre fixed settings gave no matches for self-complementarity.

#### PCR

As this project was a continuation of work previously done by master student (Olander 2012), some information about the equine sequence of KCNQ1, KCNH2 and KCNE 1-4 was already available. It will be specified in the results section and relevant appendices of this project what data was found before and what was found during this project. The focus of this project was however, due to this, focused on finding the 5' CDS and UTR ends of the genes.



5' RACE PCR was therefore utilized to investigate these regions. The FirstChoice<sup>®</sup> RLM-RACE kit from Ambion<sup>®</sup> was used. This kit works by in vitro treating RNA harvested from equine myocardium just after euthanasia, removing the phosphorous cap at the 5' terminal of m-RNA and substituting it with a synthesized RNA adapter. This can then be reverse trans-scripted into cDNA, to which ready to use application oligonucleotide primers are included in the kit that fit the now present adapter. This means that it should only be mRNA with a complete 5' end that will be amplified using PCR, and that a reverse gene specific primer (GSP) is all that is needed since the forward primers are a known part of the adapter.

Figure 5: A schematic representation of the RLM-cDNA synthesis procedure. Adapted from the FirstChoice<sup>®</sup> kit. Calf Intestinal Phosphatase (CIP), Tobacco Acid Pyrophasphatase (TAP). This was set up as a nested PCR meaning that first a PCR was set up with the 5' RACE outer primer of the kit and a GSP, using the adapted RNA as template. Then a second PCR was set up using the 5' RACE inner primer and another GSP slightly upstream from the first GSP, using the first PCR as template thus creating higher specificity for the wanted product. Due to empirical experience an additional technique was implemented to further specify the PCR. This was Touch Down (TD) PCR, in which the first 5 cycles the annealing temperature is set at 4°C above the expected and taken down 1°C each cycle through the first 5. The remaining cycles are the run at the expected annealing temperature (table 2).

The Phire Hot start II DNA Polymerase Kit (FS-122) from Thermo scientific was used for most of the PCR reactions. One reaction, the KCNQ1 results, was done with the FS-120 kit containing Phire I. All of the reactions were run on a Piko<sup>®</sup> Thermal cycler from Finnzymes<sup>®</sup>. The general composition of PCR solution is shown here in Table 1

| Reaction Component                        | Ammount for a single 10µl reaction |
|-------------------------------------------|------------------------------------|
| dH2O                                      | 5,6 μΙ                             |
| 5X Reaction buffer containing loading dye | 2 μΙ                               |
| dNTP Mix                                  | 0,2 μΙ                             |
| Forward primer                            | 0,5 μΙ                             |
| Reverse primer                            | 0,5 μΙ                             |
| Template                                  | 1 μΙ                               |
| Polymerase enzyme                         | 0,2 μΙ                             |

Table 1: The general composition of a PCR solution. Used to prepare master mixes where primers and template were added individually to the reaction tubes.

Due to the empirical experience of my Councilor the standard PCR protocol was augmented, as previously mentioned, using the following adjustments the ones written in red being different from product manual guidelines:

| Step                    | Temperature          | Time                            | Notes                                                               |
|-------------------------|----------------------|---------------------------------|---------------------------------------------------------------------|
| Initial<br>denaturation | 98°C                 | 45s                             |                                                                     |
| Denaturation            | 98°C                 | 6s                              |                                                                     |
| Annealing               | Primer specific +4°C | 6s                              | Repeat 4 times, dropping<br>extension temp. 1°C each time           |
| Extension               | 72°C                 | Dependent on<br>expected length |                                                                     |
| Denaturation            | 98°C                 | 6s                              |                                                                     |
| Annealing               | Primer specific      | 6s                              | Repeat 20 and 25 times for outer<br>and inner reaction respectively |
| Extension               | 72°C                 | Dependent on<br>expected length |                                                                     |
| Final extension         | 72°C                 | 1min                            | Cooled to 4° immediately after this<br>step                         |

Table 2: a schematic view of the Nested TD PCR protocol utilized in this project, adapted from the technical manual of the FS-122 kit.

All gels were made with TBE buffer and 2% agarose since we were expecting shorter segments (<1000bp). The Gels were mixed with Ethidium Bromide for later UV Trans-lumination on a UVP MultiDoc It Digital Imaging Systems from AH Diagnostics. Gels were run at 60V corresponding to 4V per centimeter between the electrodes of the electrophoresis tub. The Phire<sup>®</sup> II kit had loading capabilities in the reaction buffer, but the reactions done with Phire<sup>®</sup> I were mixed with loading buffer on parafilm first. Each well was loaded with 1  $\mu$ l of PCR reaction alongside a 100bp ladder from NEB<sup>®</sup>

## Sequencing

Sequencing was done by Eurofinns MWG Operon sequencing department in Germany, the KCNQ1 results of this project was done on a cloned Vector insert. KCNE1 results were sent as unpurified PCR solutions having only been evaluated on a gel. This allowed for much faster responses and proved to be reliable enough that we went forward with the method.

# Ligation, Transformation and Cloning:

Cloning was performed using the TOPO<sup>®</sup> TA cloning<sup>®</sup> kit from Invitrogen<sup>™</sup>. Prior to the ligation the PCR solution was incubated at 72°C for 10-15 minutes with the Taq-polymerase. This adds dA overhangs on the 3' strands of the PCR product which was left with blunt ends after the Phire-polymerase reaction. Thus enabling it to fit with the dT overhangs of the pCR<sup>™</sup> 4-TOPO<sup>®</sup> vector. The *E. Coli* strain used was the One-Shot<sup>®</sup> TOP10. All liquid mediums and the agar plates were mixed with 100µg/ml ampicillin for vector selectivity.

The transformation was done by mixing PCR product and the vector. This mixture was then added to a vial of *E. Coli* and left to incubate on ice for about 30 minutes. The culture was then heat shocked at 42°C for

exactly 30 seconds and then immediately put on ice again. Soon after S.O.C. medium was added to the vial and it was left to incubate at 37°C semi horizontally at 200 RPM for an hour. Here after the suspension was plated on to LB agar plates and left over night at 37°C. The following day the colonies were singled out and transferred to another liquid LB suspension to be cultured for 16 hours. A glycerol stock was made of this to be stored at -80°.

#### **Plasmid Purification:**

Plasmid purification was performed with the GeneElute™ plasmid miniprep kit from Sigma-Aldrich. The

Bacterial culture

#### Experienced User Protocol All spins at $\geq$ 12,000 $\times$ g, except as noted. 1 Harvest & lyse bacteria Pellet cells from 1–5 ml overnight culture 1 minute (1 ml from TB or 2xYT; 1-5 ml from LB medium). Discard supernatant. Resuspend cells in 200 µl Resuspension Solution. Pipette up and down or vortex. Add 200 µl of Lysis Solution. Invertigently to mix. Do not vortex. Allow to clear for ≤5 minutes Prior to first time use, be sure to add the RNase A to the Resuspension Solution. 2 Prepare cleared lysate Add 350 µl of Neutralization Solution (S3). Invert 4-6 times to mix. Pellet debris 10 minutes at max speed. 3 Prepare binding column Add 500 ml Column Preparation Solution to binding column in a collection tube □ Spin at $\geq$ 12,000 × q, 1 minute. Discard flow-through 4 Bind plasmid DNA to column Transfer cleared lysate into binding column. Spin 30,1 minute. Discard flow-through. 5 Wash to remove contaminants D Optional (EndA+ strains only): Add 500 µl Optional Wash Solution to column. Spin 30, 1 minute. Discard flow-through. Add 750 µl Wash Solution to column. Spin 30", 1 minute. Discard flowthrough. Spin 1 minute to dry column. Prior to first time use, be sure to add ethanol to the concentrated Wash Solution 6 Elute purified plasmid DNA Transfer column to new collection tube. Add 100 µl Elution Solution. Spin 1 minute. If a more concentrated plasmid DNA prep is required, reduce the elution volume to a minimum of 50 µl. Figure 6: A simple overview of the plasmid purification as adapted from the GenElute<sup>™</sup> Plasmid Miniprep kit

Pure Plasmid DNA

procedure was done in accordance with the user guide, with the included recommendations for lastly eluting with 5mM Tris-HCl and reduced volume to optimize for sequencing use as seen in step 6 of figure 6.

The purified eluent was messuredonaNanoDrop™3300SpectrophotometerfromThermoScientific

#### **Gene Synthesis and Sub Cloning**

KCNQ1 (2050bp), The KCNE1 (409bp) and -2 (391bp) Genes, as derived from the results, were ordered from www.Genescript.com on the 17-06-13 and were produced via their protocols, we ordered it to be provided in their pUC57-kan vector inserted at EcoR(I). For all 3 genes we added BStE(II) immediately downstream of the CDS so we could insert the sequence with directionality into the p-Xoom vector (5052bp). It was checked that none of the genes contained these restriction sites.

The restriction enzymes EcoRI and BstEII, both High Fidelity (HF) versions, were ordered from New England Biolabs<sup>®</sup> (NEB) and were used with CutSmart<sup>™</sup> buffer (NEB).

The Genes were cut out using a double digest and the p-Xoom vector was linearized in the same way. The reaction was set up with 1µg DNA derived from measurements on the Nanodrop machine, 1µl of each enzyme (20.000u/ml), 3µl Cutsmart<sup>™</sup> buffer, 3µl 10X Bovine Serum Albumine and dH2O added to a total of 30µl. These reactions were incubated at 37°C for 4 hours, then 5µl of 6X loading dye were added. The total

solution was loaded on a gel and run at about 100V. The KCNE genes were loaded on 2% agarose and the KCNQ1 and linearized vector were loaded on 1% agarose. The gels were then transluminated to evaluate the digestion and to visualize the bands in order to cut them out. This was done with a rectangular pipette transferring the gel piece to an 1,5ml eppendorf tube.

The DNA was extracted from the gel using the QIAquick<sup>®</sup> Gel Extraction Kit adapting some of the therein mentioned optimizations. These were leaving the PE-buffer atop the filter for 2 minutes prior to spinning the column to optimize for later salt sensitive reactions in the ligation. Also the final elution was done with 30µl 10mM Tris-HCL instead of 50µl to increase the DNA concentration.

The three ligation reactions were performed optimizing the molar ratio of insert to plasmid 3:1 not exceeding 100ng DNA, then adding 1µl T4 ligase enzyme, 2µl 10X T4 reaction buffer and adding dH2O to a total of 20µl per reaction. The mixture was left to incubate at room temperature for 2 hours and hereafter transferred to ice.

The Transformation was done using DH10B chemically competent *E. Coli.* 1µl of the ligation reaction was added to 100µl of DH10B culture thawed on ice from a -80°C stock, then left to incubate on ice for 30 minutes. Next step was heat shocking for exactly 45 seconds at 42°C on a heat block and then immediately transferring the tubes to ice again. Then 0,9ml of S.O.C. medium was added and the culture was left to incubate at 37°C and 225 Rpm vertically. The cultures were then spread on LB plates infused with 100µg/ml neomycin which the p-Xoom vector confers resistance to. Each culture had a plate with 50µl and 125µl spread onto it. These plates were left at 37°C overnight. Alongside, a negative control of the cut p-Xoom was attempted transformed as to have a background template for evaluating the plates the following day. This way we could evaluate if the vector had some self-ligating properties even though a double digest without compatible ends made it unlikely.

The plates which had growth had colonies selected from them which were resuspended in 1X PCR solution, without primers or enzymes, and spread on a grid plate. This PCR slur was then heat treated at 70°C for 5 minutes to destroy the cells and make the DNA accessible. It was then used as template for PCR to confirm the inserts were in the clones. For each reaction the same forward primer (IVTF appendix I) lying upstream of the insert was used with a gene specific reverse primer. All the reactions were done at the same time and run at 58°C since the gene specific primers used had all given results at this temperature. The extension time was set to 500bp or 5 seconds as the longest expected fragment would be around 390bp. These gels were also evaluated via translumination. The grid plate was checked the day after.

This is how far this project got before we would have moved on to in vitro transcription of the DNA into mRNA and used this to inject into *Xenopus* oocytes, to measure the currents via two-clamp electrode testing.

# Results

# **PCR and Sequencing**



Figure 7: The first gel shows a product from KCNQ1 using primer 63 and 62 (appendix I) with the Ambion 5' outer and inner respectively, in a nested TD reaction with a length of ca. 120 bp; The second gel shows a product from KCNE1 using primer 68 and 67 (appendix I) with the Ambion 5' outer and inner respectively, in a nested TD reaction with a length of ca. 190 bp; Note: The middle ladder of the second gel was loaded erroneously so it is to be disregarded.

A roughly 120bp segment of KCNQ1 was amplified using primers 62 and 63 (appendix I) along with the Ambion 5' primers. The left over reaction was then given dA overhangs with the Taq-polymerase, ligated with the TOPO TA Vector and then transformed into DHB TOP10 chemically competent *E. Coli* cells. From these the plasmids were extracted in a mini-prep kit and shipped for sequencing yielding the following result not Showing vector:

# 5'-GCACTTCCAGCCCGTGGGGGCGCTCGAGGAAGTT**GTA**GACGCGGCCTCCTCCCCGCCC<u>AGGGCCGAGAGGAAGCG</u> <u>CTG</u>-3'

The bold is where we assume the start sequence is and the underlined is the part of the equine sequence that was already known to us.

A roughly 190bp segment of KCNE1 was amplified using primers 68 and 67 (appendix I) along with the Ambion 5' primers. The left over reaction associated with the bands (figure 7) was pooled for a 17µl sample which was sent directly to sequencing yielding the following result:

# 5'-GTGCCCTGCGCTCGGCCAGCGCGGACCTCGCTGCACTGCTGCTCTCTCGGCGCCCCAAACCCGGACATTCCCTCTCC AGCAGTGTAACCTTGAAGCCCAGG**ATG**ATCCTGTCTAACACCACAGCTGTGATGCCCTTTCTGGCCAAGCTGT-3'

In the UTR of both results there were no in frame stop codons to definitely confirm the actual start codon. There were nor any start codons to suggest the contrary though. So we assume the start codons are the ones we have chosen.

During this project only PCR of KCNQ1 and KCNE1 yielded any new data. Attempts were made at amplifying 5' ends of KCNH2 and KCNE 2-4 as well however without luck. It was also attempted to amplify KCNQ1 as one continuous piece, also without luck.

## Subcloning

The excision double digestion of the 3 genes gave 2 distinct bands of the expected lengths each (pUC-57 vector and insert). While the double digest to linearize the p-Xoom vector only showed the approximately 5kb band, even though it was attempted to visualize the 40bp excision between EcoRI and BSTEII to confirm the digestion.



Figure 8: a graphic representation of the first steps of the subcloning process up until transformation. Adapted from (Addgene 2013)

During transformation the negative control or background plate with linearized p-Xoom did not have any growth over a 2 day period, this was done to see if the linearized vector had self-ligating properties. However the KCNE1 and -2 plates each had only 1 visible colony overnight and none further after another day. The uncut p-Xoom and KCNQ1 plates showed an abundance of colonies. 4 distinct KCNQ1, 2 p-Xoom and both KCNE colonies were selected for PCR testing and spread on a grid plate. The grid plate had growth in all but the 4 KCNQ1 grids.

The inserts of the final vector were quality tested via PCR with gene specific primers. This however yielded no visible bands aside from the ladder. When they should have showed single bands between 300 and 400bp

## **Gene Analysis**

#### KCNQ1

A nucleotide comparison of our equine sequence against the human KCNQ1 CDS (NM\_000218.2) shows 90% identities, and 100% overlap. There are 12 gaps, 6 in each species. The first 24 bp of the sequence is the part that has been deduced during this project (Blue appendix II). Due to the time constraints of this project, we have assumed that the ATG start sequence is actually there, since the sequencing results we received had the first 3 bp as GTA, making GTA $\rightarrow$ ATG (see 1. sequencing result page13). In the sequencing result it was however also noted that the G and A were not highly probable (Turquoise appendix II). This was necessary in order to move on to oocyte expression so that we would have a complete CDS.

A protein comparison shows 91-93% similarity, the latter being % positives. 3 amino acid dissimilarities are identical to human mutations linked to LQT1 or cardiac arrhythmia (Red appendix II). Another 6 dissimilarities are directly at sites of human mutations but were not identical to the ones registered, and

finally 8 other dissimilarities are 1 amino acid adjacent of a registered human mutation (Yellow appendix II). 1 of the 6; and 1 of the 8 dissimilarities are inside a trans-membrane helix S2 and S1 respectively.

## KCNH2

A nucleotide comparison of our equine sequence against the human KCNH2 CDS (NM\_000238.3) shows 93% identities, and 100% overlap. There are 3 gaps, corresponding to a 3bp in frame deletion at 881bp of the equine sequence.

The protein comparison shows 98% similarity and only 1 dissimilarity is 1bp adjacent to a registered human mutation linked to LQT2 (Yellow appendix III). There are no dissimilarities in any of the trans-membrane helices.

#### KCNE1

A nucleotide comparison of our equine sequence against the human KCNE1 CDS (NM\_000219.4) shows 85% identities, and 100% overlap. There are 2 gaps, one in each species.

The protein comparison shows 80-87% similarity. 1 amino acid dissimilarity is identical to a human mutation linked to LQT5 (Red appendix IV). Another 3 dissimilarities are directly at sites of human mutations but are not identical to the ones registered, and finally 8 other dissimilarities are 1 amino acid adjacent of a registered human mutation (Yellow appendix IV). One of the 3 dissimilarities is the only one inside the trans-membrane helix.

#### KCNE2

A nucleotide COMPARISON of our equine sequence against the human KCNE2 CDS (NM\_172201.1) shows 87% identities, and 100% overlap. There are 0 gaps.

The protein COMPARISON shows 89-95% similarity. There are no dissimilarities directly at human mutation sites. There are 3 dissimilarities which are 1 amino acid adjacent of a registered human mutation (Yellow appendix V). There are no dissimilarities inside the trans-membrane helix.

# Conclusion

Equine KCNQ1 and KCNE1 are overall comparable to their human counterparts, however there are many dissimilarities when BLAST'ed and several of these where at registered sites of human mutations linked to LQT1 and LQT6 respectively. Considering this it is likely that congenital LQTS may be found in the equine population. It also suggests that the entire  $I_{KS}$  channel may have different kinetics from the human.

Considering KCNH2 there is very little difference from the human protein. And that only one dissimilarity was adjacent to a registered human mutation. The 98% protein similarity is somewhat higher than the other proteins, which is a noteworthy finding in itself. It cannot be contributed to this project however.

KCNE2 has only a few dissimilarities adjacent to registered human mutation sites. Otherwise there is good similarity. This combined with the knowledge of KCNH2 suggests that the  $I_{Kr}$  Channel complex is more like its human counterpart at least compared to  $I_{Ks}$ .

None of the genes have been definitely confirmed via in frame 5'-UTR stop codons.

# **Discussion**

Animals have been used for models of human LQTS, in particular dogs used for medical trials. This is done by crushing part of the SA node and utilizing  $\beta$  blockade to induce bradycardia. This is of course done under anesthesia. Then the study drugs, in the case of this reference H1-antagonsitic antihistamines, are administered to see if they have detrimental effects on the ECG of the dog.(Weissenburger, Noyer et al. 1999)

These pharmacological conditions are not optimal since it cannot be known for sure whether  $\beta$ -blockade and or anesthesia interact with the test drug to either potentiate or negate any effects. Therefore a genetic approach to understanding the kinetics of the cardiac action potential in animals is important as it may lead to the finding of a spontaneous animal model for LQTS. Furthermore a broader understanding may lead to better in vitro testing capabilities as to reduce the number of test animals needed for research such as this.

One study has found spontaneous examples of acquired LQTS in dogs. (Campbell and Atwell 2002) Where in 39 cases dogs were admitted to the clinic suffering from tick toxicity (*Ixodes Holocyclus*) where they had ECG's done at admission, 24 hours later, at discharge, when clinically well and approximately 12 months later. These results showed that the dogs had prolonged QT intervals (corrected for heart rate) and abnormal T-wave morphology comparable to that of human LQTS. These ECG findings were present after clinical remission, but none had any ECG abnormalities 12 months after admission.

Another study have found congenital forms of LQTS in a canine population, I have however been unable to find the source which was mentioned to me by my advisor despite thorough searches on the OvidSP through our faculty library web page(Library 2013) so this will have to be confirmed.

This indicates that LQTS is a valid problem in animal populations, and we should therefor take care what drugs we use in animals. A study has tried to evaluate a few suspected sedatives with regard to echocardiographic evaluation. It was, among other things, found that romifidine and detomidine gave significantly reduced heart rate.(Buhl, Ersboll et al. 2007) This would be more severe if the horse already has an LQTS diathesis.

This problem of not knowing which drugs are detrimental to the equine heart was also a part of the master's thesis (Olander 2012) where she showed that Acepromazine could block the ERG channel expressed in *Xenopus* oocytes. Given time it would have been the goal of this project as well to try some of these suspected drugs in vitro on KCNQ1 with and without the KCNE1 subunit. Perhaps also try the KCNH2 experiments along with the KCNE2 subunit this time.

Analysis of KCNQ1's genomic structure indicates that it should not be expected to behave completely identical to the human channel. This emphasizes the need to screen drugs on a species level, and not to assume that human approved drugs have the same kinetics in horses. The next steps to express the channels and the subunits are an important step in this direction.

Analysis of KCNH2 on the other hand suggests that it might be a good human homologue. The high similarity might be explained by the channels dual gating mechanism and or its high sensitivity to drugs,

meaning that mutations are badly tolerated leading to high conservation. This is however my own speculation.

Another aspect of identifying the equine sequence is that it enables the possibility to screen the population for mutations and perhaps identify horses at risk of getting cardiac diseases, or post mortem identify possible reasons for sudden death. In the long run to improve the breeding of horses to perhaps eliminate carriers from the breeding programs. This is also a reason for debate as many horse owners may not be willing to start testing their horses out of fear of potentially losing the profitability of a valuable stallion or mare.

With regard to why the PCR quality control of our sub cloned vector failed to produce bands, it was not entirely clear if the forward primer IVT-forward (appendix I) was genuine. It was last used by a former Ph-D student whose data and notes we then had to interpret. Therefor after our failed attempt my last action in the laboratory, before committing to writing, was to order a new stock of the primer as well as a reverse primer downstream of the insert. So another attempt can be made.

Also during the sub cloning process, when no 40bp band was visualized at the linearization of the p-Xoom vector it might be due to such a small fragment easily diffusing through the gel making the concentration too low to see.

More research is needed to definitely confirm the 5' ends of all four genes preferably by locating in frame stop codons in the 5' UTR. Also the actual Start codon of KCNQ1 needs to be verified, as do the 5' and 3' ends of KCNE2. The 5' RACE process seems good enough to do this the process just has to be tweaked some more.

# References

Addgene. (2013). Retrieved 08-05, 2013, from <u>http://www.addgene.org/static/cms/images/Restriction-Enzyme-based-Subcloning.gif</u>.

Buhl, R., A. K. Ersboll, N. H. Larsen, L. Eriksen and J. Koch (2007). "The effects of detomidine, romifidine or acepromazine on echocardiographic measurements and cardiac function in normal horses." <u>Vet Anaesth Analg</u> **34**(1): 1-8.

Campbell, F. E. and R. B. Atwell (2002). "Long QT syndrome in dogs with tick toxicity (Ixodes holocyclus)." <u>Aust Vet J</u> **80**(10): 611-616.

Doyle, D. A., C. J. Morais, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon (1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity." <u>Science</u> **280**(5360): 69-77.

Finley, M. R., Y. Li, F. Hua, J. Lillich, K. E. Mitchell, S. Ganta, R. F. Gilmour, Jr. and L. C. Freeman (2002). "Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart." <u>Am.J.Physiol Heart Circ.Physiol</u> **283**(1): H126-H138.

Hedley, P. L., P. Jorgensen, S. Schlamowitz, R. Wangari, J. Moolman-Smook, P. A. Brink, J. K. Kanters, V. A. Corfield and M. Christiansen (2009). "The genetic basis of long QT and short QT syndromes: a mutation update." <u>Hum.Mutat.</u> **30**(11): 1486-1511.

Heginbotham, L., Z. Lu, T. Abramson and R. MacKinnon (1994). "Mutations in the K+ channel signature sequence." <u>Biophys.J.</u> **66**(4): 1061-1067.

IO9. (2013). Retrieved 08-05, 2013, from <u>http://img.gawkerassets.com/img/18jpma2xnl0q8jpg/ku-xlarge.jpg</u>.

Kiryu, K., N. Machida, Y. Kashida, T. Yoshihara, A. Amada and T. Yamamoto (1999). "Pathologic and electrocardiographic findings in sudden cardiac death in racehorses." J <u>Vet Med Sci</u> **61**(8): 921-928.

Library, L. S. F. (2013). from http://www.bvfb.life.ku.dk/Default.aspx.

Lyle, C. H., G. Turley, K. J. Blissitt, R. S. Pirie, I. G. Mayhew, B. C. McGorum and J. A. Keen (2010). "Retrospective evaluation of episodic collapse in the horse in a referred population: 25 cases (1995-2009)." <u>J Vet Intern Med</u> **24**(6): 1498-1502.

Lyle, C. H., F. A. Uzal, B. C. McGorum, H. Aida, K. J. Blissitt, J. T. Case, J. T. Charles, I. Gardner, N. Horadagoda, K. Kusano, K. Lam, J. D. Pack, T. D. Parkin, R. F. Slocombe, B. D. Stewart and L. A. Boden (2011). "Sudden death in racing Thoroughbred horses: an international multicentre study of post mortem findings." <u>Equine Vet J</u> **43**(3): 324-331.

Nerbonne, J. M. and R. S. Kass (2005). "Molecular physiology of cardiac repolarization." <u>Physiol Rev.</u> **85**(4): 1205-1253.

Olander, E. (2012). <u>Action Potential Repolarization in the Equine Heart</u> Master's Thesis, University of Copenhagen.

Poulsen, A. N. and D. A. Klaerke (2007). "The KCNE1 beta-subunit exerts a transient effect on the KCNQ1 K+ channel." <u>Biochem Biophys Res Commun</u> **363**(1): 133-139.

Sanguinetti, M. C., M. E. Curran, A. Zou, J. Shen, P. S. Spector, D. L. Atkinson and M. T. Keating (1996). "Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel." <u>Nature</u> **384**(6604): 80-83.

Sanguinetti, M. C., C. Jiang, M. E. Curran and M. T. Keating (1995). "A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel." <u>Cell</u> **81**(2): 299-307.

Splawski, I., J. Shen, K. W. Timothy, M. H. Lehmann, S. Priori, J. L. Robinson, A. J. Moss, P. J. Schwartz, J. A. Towbin, G. M. Vincent and M. T. Keating (2000). "Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2." <u>Circulation</u> **102**(10): 1178-1185.

Tan, H. L., C. J. Hou, M. R. Lauer and R. J. Sung (1995). "Electrophysiologic mechanisms of the long QT interval syndromes and torsade de pointes." <u>Ann Intern Med</u> **122**(9): 701-714.

Wang, Q., M. E. Curran, I. Splawski, T. C. Burn, J. M. Millholland, T. J. VanRaay, J. Shen, K. W. Timothy, G. M. Vincent, J. T. de, P. J. Schwartz, J. A. Toubin, A. J. Moss, D. L. Atkinson, G. M. Landes, T. D. Connors and M. T. Keating (1996). "Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias." <u>Nat.Genet.</u> **12**(1): 17-23.

Warmke, J. W. and B. Ganetzky (1994). "A family of potassium channel genes related to eag in Drosophila and mammals." <u>Proc.Natl.Acad.Sci.U.S.A</u> **91**(8): 3438-3442.

Weissenburger, J., M. Noyer, G. Cheymol and P. Jaillon (1999). "Electrophysiological effects of cetirizine, astemizole and D-sotalol in a canine model of long QT syndrome." <u>Clin Exp Allergy</u> **29 Suppl 3**: 190-196.

Witchel, H. J., J. T. Milnes, J. S. Mitcheson and J. C. Hancox (2002). "Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes." <u>J Pharmacol Toxicol Methods</u> **48**(2): 65-80.

# **Appendices**

# **Apendix I Primers used**

Only the p-Xoom and Ambion primers were forward primers, the GSP's were reverse.

The user manual for the RACE kit specified that the primers were optimized for 60°C ±5°C

# Ambion 5' RACE Primers:

| Primer | Sequence $5' - 2'$                 | hn | Temperature | GC content | Sense  |
|--------|------------------------------------|----|-------------|------------|--------|
| name   | Sequence 5 – 5                     |    | remperature | oc content | strand |
| Inner  | CGCGGATCCGAACACTGCGTTTGCTGGCTTTGAT | 34 | 72,77°C     | 56%        | N/A    |
| Outer  | GCTGATGGCGATGAATGAACACTG           | 24 | 61,55°C     | 50%        | N/A    |

#### KCNQ1:

| Primer 62 | CAGCGCTTCCTCTCGGCCCT     | 20 | 65,27°C | 70% | AGGGCCGAGAGGAAGCGCTG     |
|-----------|--------------------------|----|---------|-----|--------------------------|
| Primer 63 | GAGAAGGGGCACTTCTTGGCCAGG | 24 | 64,17°C | 63% | CCTGGCCAAGAAGTGCCCCTTCTC |

## KCNE1:

| Primer 67 | ACAGCTTGGCCAGAAAGGGC | 20 | 60,18°C | 60% | GCCCTTTCTGGCCAAGCTGT |
|-----------|----------------------|----|---------|-----|----------------------|
| Primer 68 | CGGGCTGGGCTAGACGTG   | 18 | 60,38°C | 72% | CACGTCTAGCCCAGCCCG   |

#### KCNE2:

| K2 Inner | GCTCAGCTGTCGTGTTCCTGCGC | 23 | 66,88°C | 65% | GCGCAGGAACACGACAGCTGAGC |
|----------|-------------------------|----|---------|-----|-------------------------|
|          |                         |    |         |     |                         |

#### p-Xoom:

| IVTF | CAGAGCTCTCTGGCTAACTAGAG | 23 | 61,49°C | 52% | N/A |
|------|-------------------------|----|---------|-----|-----|
|------|-------------------------|----|---------|-----|-----|

# Apendix II KCNQ1

The Blue is what was found during this project, and the turquoise is putative.

| Score<br>2593 b<br>Query | its(1404 | Expect Identitie<br>4) 0.0 1828/2<br>Aligence Contract Contra | <b>:s</b><br><b>)37(90%)</b><br>GGCCGAGAGGAAGCGCTG | Gaps<br>12/2037(0%)<br>GGGCTGGGGCCGCCTG | Strand<br>Plus/Plus<br>60 |
|--------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------|
| Sbjct                    | 1        | ATGGCCGCGGCCTCCTCCCCGCCCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGCCGAGAGGAAGCGCTG                                 | <br>GGGTTGGGGCCGCCTG                    | 60                        |
| Query                    | 61       | CCGGGCGCCCGGCGGGGCAGCGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCTGGCCAAGAAGTGCCC                                 | CTTCTCCCTGGAGCTG                        | 120                       |
| Sbjct                    | 61       | CCAGGCGCCCGGCGGGGGCAGCGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCTGGCCAAGAAGTGCCC                                 | CTTCTCGCTGGAGCTG                        | 120                       |
| Query                    | 121      | GCTGAGGGCGGCCCGGCGGGCGGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCTCTATGCGCCCATCGT                                 | gcctcccggcacccag                        | 180                       |
| Sbjct                    | 121      | GCGGAGGGCGGCCCGGCGGCGGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCTCTACGCGCCCATCG-                                 | CGCCCGGCGCCCCA                          | 177                       |
| Query                    | 181      | gggcccgcgctccccgcgtctccggc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cccgccggccgcgccccc                                 | cgcagccgccgacctt                        | 240                       |
| Sbjct                    | 178      | GGTCCCGCGCCCCCTGCGTCCCCGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | CAGTTGCCTCCGACCTT                       | 237                       |
| Query                    | 241      | ggcccgcggccgccggtgagcctcga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCGCGCGTCTCCATCTA                                 | ACAGGACGCGCCGCCCG                       | 300                       |
| Sbjct                    | 238      | GGCCCGCGGCCGCCGGTGAGCCTAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCGCGCGTCTCCATCTA                                 | ACAGCACGCGCCGCCCG                       | 297                       |
| Query                    | 301      | CTGCTCGCGCGCACCCACATCCAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCGCGTCTACAACTTCCI                                 | CGAGCGCCCCACGGGC                        | 360                       |
| Sbjct                    | 298      | GTGTTGGCGCGCACCCACGTCCAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCGCGTCTACAACTTCCT                                 | CGAGCGTCCCACCGGC                        | 357                       |
| Query                    | 361      | TGGAAGTGCTTCGTCTACCACTTCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGTCTTCCTCATCGTCCT                                 | GGCCTGCCTCATCTTC                        | 420                       |
| Sbjct                    | 358      | TGGAAATGCTTCGTTTACCACTTCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGTCTTCCTCATCGTCCI                                 | GGTCTGCCTCATCTTC                        | 417                       |
| Query                    | 421      | AGCGTGCTGTCTACCATCGAGCAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IGTCACTCTGGCCACAGG                                 | GACCCTCTTCTGGATG                        | 480                       |
| Sbjct                    | 418      | AGCGTGCTGTCCACCATCGAGCAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IGCCGCCCTGGCCACGGG                                 | GACTCTCTTCTGGATG                        | 477                       |
| Query                    | 481      | GAGATCGTCCTGGTGGTGTTCTTTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GACAGAGTACGCCGTCCG                                 | GCCTCTGGTCAGCAGGC                       | 540                       |
| Sbjct                    | 478      | GAGATCGTGCTGGTGGTGTTCTTCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GACGGAGTACGTGGTCCG                                 | GCCTCTGGTCCGCCGGC                       | 537                       |
| Query                    | 541      | TGCCGCAGCAAGTACGTGGGCATCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGGGCGGCTGCGCTTTGC                                 | CCCGGAAGCCCATTTCC                       | 600                       |
| Sbjct                    | 538      | TGCCGCAGCAAGTACGTGGGCCTCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGGCCGGCTGCGCTTTGC                                 | CCCGGAAGCCCATTTCC                       | 597                       |
| Query                    | 601      | ATCATTGACCTCATTGTGGTTGTGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | CGTGGGCTCCAAAGGG                        | 660                       |
| Sbjct                    | 598      | ATCATCGACCTCATCGTGGTCGTGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CTCCATGGTGGTCCTCTG                                 | GCGTGGGCTCCAAGGGG                       | 657                       |
| Query                    | 661      | CAGGTGTTTGCCACCTCAGCCATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGGCATCCGATTCCTTCA                                 |                                         | 720                       |
| Sbjct                    | 658      | CAGGTGTTTGCCACGTCGGCCATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGCATCCGCTTCCTGCA                                  | AGATCCTGAGGATGCTA                       | 717                       |
| Query                    | 721      | CATGTCGACCGCCAGGGAGGCACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAGGCTGCTGGGCTCCGI                                 | GGTCTTCATCCACCGT                        | 780                       |
| Sbjct                    | 718      | CACGTCGACCGCCAGGGAGGCACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAGGCTCCTGGGCTCCGI                                 | GGTCTTCATCCACCGC                        | 777                       |
| Query                    | 781      | CAGGAGCTGATAACCACCTTGTACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGGCTTCCTGGGCCTCAI                                 | CTTCTCCTCGTACTTC                        | 840                       |
| Sbjct                    | 778      | CAGGAGCTGATAACCACCCTGTACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGGCTTCCTGGGCCTCAT                                 | CTTCTCCTCGTACTTT                        | 837                       |
| Query                    | 841      | GTGTACCTGGCCGAGAAGGACGCCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAACGAGTCGGGCCGTGI                                 | CGAGTTTGGCAGCTAT                        | 900                       |
| Sbjct                    | 838      | GTGTACCTGGCTGAGAAGGACGCGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAACGAGTCAGGCCGCGI                                 | GGAGTTCGGCAGCTAC                        | 897                       |

| Query | 901  | GCAGATGCCCTTTGGTGGGGGGGTGGTCACTGTCACCACCATTGGCTATGGAGACAAAGTG       | 960  |
|-------|------|---------------------------------------------------------------------|------|
| Sbjct | 898  | GCAGATGCGCTGTGGTGGGGGGGGGGGGGCACAGGTCACCACCACCATCGGCTATGGGGACAAGGTG | 957  |
| Query | 961  | CCCCAGACGTGGGTCGGGAAGACCATTGCCTCCTGCTTCTCCGTCTTCGCTATCTCCTTC        | 1020 |
| Sbjct | 958  | CCCCAGACGTGGGTCGGGAAGACCATCGCCTCCTGCTTCTCTGTCTTTGCCATCTCCTTC        | 1017 |
| Query | 1021 | TTCGCACTCCCGGCGGGGATCCTCGGCTCGGGCTTTGCCCTGAAGGTGCAGCAGAAACAG        | 1080 |
| Sbjct | 1018 | TTTGCGCTCCCAGCGGGGATTCTTGGCTCGGGGTTTGCCCTGAAGGTGCAGCAGAAGCAG        | 1077 |
| Query | 1081 | AGGCAGAAACACTTCAACCGGCAGATTCCGGCGGCAGCCTCGCTCATTCAGACGGCGTGG        | 1140 |
| Sbjct | 1078 | AGGCAGAAGCACTTCAACCGGCAGATCCCGGCGGCAGCCTCACTCA                      | 1137 |
| Query | 1141 | AGGTGCTACGCAGCTGAGAATCCCGACTCCTCCACCTGGGAGATCTACGTGCGGAAGCCC        | 1200 |
| Sbjct | 1138 | AGGTGCTATGCTGCCGAGAACCCCGACTCCTCCACCTGGAAGATCTACATCCGGAAGGCC        | 1197 |
| Query | 1201 | TCCCGGAGCCACGCTCTGCTCTCCCCCAGCCCCAAGCCCAAGAAGTCTGCCATGGTAAAG        | 1260 |
| Sbjct | 1198 | CCCCGGAGCCACACTCTGCTGTCACCCAGCCCCAAACCCAAGAAGTCTGTGGTGGTAAAG        | 1257 |
| Query | 1261 |                                                                     | 1320 |
| Sbjct | 1258 | AAAAAAAAGTTCAAGCTGGACAAAGACAATGGGGTGACTCCTGGAGAGAAGATGCTCACA        | 1317 |
| Query | 1321 | GTCCCTCACATCACGTGTGACCTCGTCTCGGAGGAGGCGGAGGCCAGACCATTTCTTGGTG       | 1380 |
| Sbjct | 1318 | GTCCCCCATATCACGTGCGACC-CCCCAGAAGAGCGGCGGCTGGACCACTTCTCTGTC          | 1374 |
| Query | 1381 | GAGAGCTGTGACAATTCTGTGAAGAAGAGGCCCCACGCTGCTAGAAGTGAGCACGGCCCAT       | 1440 |
| Sbjct | 1375 | GACGGCTATGACAGTTCTGTAAGGAAGAGCCCAACACTGCTGGAAGTGAGCATGCCCCAT        | 1434 |
| Query | 1441 | TTCATGAGAACCAACAGCTTTGCTGAGGACCTGGACCTGGAAGGGGAGACGCTGCTGGCT        | 1500 |
| Sbjct | 1435 | TTCATGAGAACCAACAGCTTCGCCGAGGACCTGGACCTGGAAGGGGAGACTCTGCTGACA        | 1494 |
| Query | 1501 |                                                                     | 1560 |
| Sbjct | 1495 | CCCATCACCCACATCTCACAGCTGCGGGAACACCATCGGGCCACCATTAAGGTCATTCGA        | 1554 |
| Query | 1561 | CGCATGCAGTACTTTGTGGCCAAGAAGAAATTCCAGCAAGCGCGGAAGCCCTATGATGTG        | 1620 |
| Sbjct | 1555 | CGCATGCAGTACTTTGTGGCCAAGAAGAAATTCCAGCAAGCGCGGAAGCCTTACGATGTG        | 1614 |
| Query | 1621 | CGGGACGTCATTGAGCAGTACTCCCAGGGCCACCTCAACCTCATGGTGCGCATCAAAGAG        | 1680 |
| Sbjct | 1615 | CGGGACGTCATTGAGCAGTACTCGCAGGGCCACCTCAACCTCATGGTGCGCATCAAGGAG        | 1674 |
| Query | 1681 | CTGCAGAGAAGGCTGGACCAGTCCATCGGAAAGCCCTCCTCTTCATCTCCGGCTCAGAA         | 1740 |
| Sbjct | 1675 | CTGCAGAGGAGGCTGGACCAGTCCATTGGGAAGCCCTCACTGTTCATCTCCGTCTCAGAA        | 1734 |
| Query | 1741 | AAGAGCAAGGACCGCGGCAATAACACCATCGGCGCCCGCC                            | 1800 |
| Sbjct | 1735 | AAGAGCAAGGATCGCGGCAGCAACACGATCGGCGCCCGCC                            | 1794 |
| Query | 1801 | GTGACGCAGCTGGACCAGAGGCTGGTGCTCATCACAGACATGCTGCACCAGCTGCTCTCC        | 1860 |
| Sbjct | 1795 | GTGACGCAGCTGGACCAGAGGCTGGCACTCATCACCGACATGCTTCACCAGCTGCTCTCC        | 1854 |

| Query | 1861 | TTGCACCACGGCAGC-CCCCCGGGCGGCCGTCCCCCCAGCGGGGACGAGGCCCAAGTG    | 1917 |
|-------|------|---------------------------------------------------------------|------|
| Sbjct | 1855 | TTGCACGGTGGCAGCACCCCGGCAGCGGCGGCCCCCCAGAGAGGGGGGG             | 1914 |
| Query | 1918 | GTCCAGCCCTGTGGTGGCGGCTCCATCAACCCCGAGCTCTTCCTGCCCAGCAACGCC     | 1974 |
| Sbjct | 1915 | ACCCAGCCCTGCGGCAGTGGCGGCTCCGTCGACCCTGAGCTCTTCCTGCCCAGCAACACC  | 1974 |
| Query | 1975 | CTGCCCACCTACGAACAGCTGACCGTGCCCCACAGGGGCCCTGACGAGGGGTCCTGA 203 | 31   |
| Sbjct | 1975 | CTGCCCACCTACGAGCAGCTGACCGTGCCCAGGAGGGGCCCCGATGAGGGGTCCTGA 20  | 31   |

#### **Protein BLAST**

A yellow color indicates a site where a human mutation is noted either in ClinVar or at <a href="http://www.fsm.it/cardmoc/">http://www.fsm.it/cardmoc/</a> only ones that were 0 – 1bp adjacent from dissimilarities have been marked

Red indicates when said mutation is the same as the human

A green color indicates the membrane spanning helices as calculated from TMHMM 2.0 server

| Score  |        | Expect Method                                                                                                            | Identities                                          | Positives                                 | Gaps      |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------|
| 1140 b | its(29 | 50) 0.0 Compositional matrix adjust.                                                                                     | 614/678(91%)                                        | 631/678(93%)                              | 4/678(0%) |
| Query  | Ţ      | MDAASSPPRAERKRWGWGRLPGARRGSAGLAKKCPF<br>M AASSPPRAERKRWGWGRLPGARRGSAGLAKKCPF                                             | 'SLELAEGGPAGGALY.<br>'SLELAEGGPAGGALY               | APIVPPGTQ 60<br>Apt p                     |           |
| Sbjct  | 1      | M <mark>A</mark> AASSPPRAERKRWGWGRLPGARRGSAGLAKKCPF                                                                      | SLELAEGGPAGGALY.                                    | APIAPGAPG 60                              |           |
| Query  | 61     | GPALPASPAPPAAPPAAADLGPRPVSLDPRVSIYF                                                                                      | TRRPLLARTHIQGRV                                     | YNFLERPTG 120                             |           |
| Sbjct  | 61     | -PAPPASPAAPAAPPVASDLGPRPPVSLDPRVSII                                                                                      | TRRP+LARTH+QGRV<br>TRRPVLARTHVQGRV                  | YNFLERPTG<br>YNFLERPTG 119                |           |
| Query  | 121    | WKCFVYHFAVFLIVLACLIFSVLSTIEQYVTLATG                                                                                      | LFWMEIVLVVFFGTE                                     | <mark>Ya</mark> vrlwsag 180               |           |
| Sbjct  | 120    | WKCFVYHFAVFLIVL CLIFSVLSTIEQY LATGI<br>WKCFVYHFAVFLIV <mark>L</mark> V <mark>C</mark> LIFSVLSTIEQ <mark>Y</mark> AALATGI | 'LFWMEIVLVVFFGTE<br>'LFWMEIVLVVFFGTE                | y vrlwsag<br><mark>yv</mark> vrlwsag 179  |           |
| Query  | 181    | CRSKYVGIWGRLRFARKP <mark>ISIIDLIVVVASMVVLC</mark> V                                                                      | <mark>'GS</mark> KGQVFATSAIRGI                      | RFLQILRML 240                             |           |
| Sbjct  | 180    | CRSKYVG+WGRLRFARKPISIIDLIVVVASMVVLCV<br>CRSKYV <mark>G</mark> LWGRLRFARKPISIIDLIVVVASMVVLCV                              | 'GSKGQVFATSAIRGI:<br>'GSKGQVFATSAIRGI:              | RFLQILRML<br>RFLQILRML 239                |           |
| Query  | 241    | HVDRQGGTWRLLGSVVFIHRQEL <mark>ITTLYIGFLGLI</mark>                                                                        | <mark>'SSYFVYL</mark> AEKDAVNE                      | SGR <mark>VEFGSY</mark> 300               |           |
| Sbjct  | 240    | HVDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIF<br>HVDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIF                                             | 'SSYFVYLAEKDAVNE<br>'SSYFVYLAEKDAVNE                | SGRVEFGSY<br>SGRVEFGSY 299                |           |
| Query  | 301    | ADALWWGVVTVTTIGYGDKVPQTWVGKTIAS <mark>CFSVE</mark>                                                                       | AISFFALPAGILGSG                                     | <mark>Fal</mark> kvqqkq 360               |           |
| Sbjct  | 300    | ADALWWGVVTVTTIGYGDKVPQTWVGKTIASCFSVF<br>ADALWWGVVTVTTIGYGDKVPQTWVGKTIASCFSVF                                             | 'AISFFALPAGILGSG<br>'AISFFALPAGILGSG                | FALKVQQKQ<br>FALKVQQKQ 359                |           |
| Query  | 361    | RQKHFNRQIPAAASLIQTAWRCYAAENPDSSTW <mark>E</mark> IY                                                                      | VRKPSRSHALLSPSP                                     | KPKKSA <mark>M</mark> VK 420              |           |
| Sbjct  | 360    | RQKHFNRQIPAAASLIQTAWRCYAAENPDSSTW+IY<br>RQKHFNRQIPAAASLIQTAWRCYAAENPDSST <mark>WK</mark> IY                              | (+RK RSH LLSPSP)<br>[] <mark>RK</mark> APRSHTLLSPSP | KPKKS +VK<br>KPKKSV <mark>V</mark> VK 419 |           |
| Query  | 421    | KKKFKLDKDNGVSPGEKTLTVPHITCDLV <mark>S</mark> EERRPI                                                                      | )HFLVE <mark>S</mark> CDNSVKKSP                     | TLLEVST <mark>A</mark> H 480              |           |
| Sbjct  | 420    | KKKFKLDKDNGV+PGEK LTVPHITCD EERR D<br>KKKFKLDKDNGVTPGEKMLTVPHITC <mark>D</mark> -P <mark>P</mark> EER <mark>R</mark> LD  | )HF V+ D+SV+KSP'<br>)HFSVD <mark>G</mark> YDSSVRKSP | TLLEVS H<br>TLLEVSM <mark>P</mark> H 478  |           |
| Query  | 481    | FMRTNSFAEDLDLEGETLLAPITHVSQLREHHRATI                                                                                     | KVIRRMQYFVAKKKF                                     | QQARKPYDV 540                             |           |
| Sbjct  | 479    | FMRTNSFAEDLDLEGETLL PITH+SQLREHHRATI<br>FMRTNSFAEDLDLEGETLLTPITHISQLREHHRATI                                             | KVIRRMQYFVAKKKF<br>KVIRRMQYFVAKKKF                  | QQARKPYDV<br>QQARKPYDV 538                |           |
| Query  | 541    | RDVIEQYSQGHLNLMVRIKELQRRLDQSIGKPSLFI                                                                                     | SGSEKSKDRGNNTIG                                     | ARLNRVEDM 600                             |           |
| Sbjct  | 539    | RDVIEQYSQGHLNLMVRIKELQRRLDQSIGKPSLFI<br>RDVIEQYSQGHLNLMVRIKELQRRLDQSIGKPSLFI                                             | S SEKSKDRG+NTIG.<br>SVSEKSKDRGS <mark>N</mark> TIG  | ARLNRVED<br>ARLNRVEDK 598                 |           |

| Que                | ery | 601    | VTQLDQRLVLITDMLHQLLSLHHGSPPGGRPPSGD- <mark>E</mark> AQVVQPCG-GGS <mark>A</mark> NPELFLPSNA 658                                                                                |     |
|--------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Sb                 | jct | 599    | VTQLDQRL LITDMLHQLLSLH GS PG   P  +  A + QPCG GGS++PELFLPSN<br>VTQLDQRLALITDMLHQLLSLHGGSTP <mark>G</mark> SGGPPREG <mark>G</mark> AHITQPCGSGGS <mark>V</mark> DPELFLPSNT  658 |     |
| Que                | ery | 659    | LPTYEQLTVPHRGPDEGS 676                                                                                                                                                        |     |
| Sbj                | jct | 659    | LPTYEQLTVPRRGPDEGS 676                                                                                                                                                        |     |
| Equine 1           |     | MDAASS | PPRAFRKRWGWGRI, PGARRGSAGI, AKKCPFSI, FI, AFGGPAGGAI, YAPTVPPGTOGPAI, PASPAPPAAPPAAADI,                                                                                       | 80  |
| Human 1            | . 1 | MAAASS | SPPRAERKRWGWGRLPGARRGSAGLAKKCPFSLELAEGGPAGGALYAPIAP-GAPGPAPPASPAAPAAPPVASDL                                                                                                   | 79  |
| Equine 8           | 1   | GPRPPV | SLDPRVSIYRTRRPLLARTHIQGRVYNFLERPTGWKCFVYHFAVFLIVLACLIFSVLSTIEQYVTLATGTLFWM                                                                                                    | 160 |
| Human <sub>8</sub> | 0   | GPRPPV | VSLDPRVSIYSTRRPVLARTHVQGRVYNFLERPTGWKCFVYHFAVFLIVLVCLIFSVLSTIEQYAALATGTLFWM                                                                                                   | 159 |
| Equine 1           | 61  | EIVLVV | VFFGTEYAVRLWSAGCRSKYVGIWGRLRFARKPISIIDLIVVVASMVVLCVGSKGQVFATSAIRGIRFLQILRML                                                                                                   | 240 |
| Human <sub>1</sub> | 60  | EIVLVV | YFFGTEY <b>V</b> VRLWSAGCRSKYVG <b>L</b> WGRLRFARKPISIIDLIVVVASMVVLCVGSKGQVFATSAIRGIRFLQILRML                                                                                 | 239 |
| Equine 2           | 41  | HVDRQG | GTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAVNESGRVEFGSYADALWWGVVTVTTIGYGDKV                                                                                                    | 320 |
| Human 2            | 40  | HVDRQG | GTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAVNESGRVEFGSYADALWWGVVTVTTIGYGDKV                                                                                                    | 319 |
| Equine 3           | 21  | PQTWVG | KTIASCFSVFAISFFALPAGILGSGFALKVQQKQRQKHFNRQIPAAASLIQTAWRCYAAENPDSSTWEIY <b>V</b> RKP                                                                                           | 400 |
| Human 3            | 20  | PQTWVG | KTIASCFSVFAISFFALPAGILGSGFALKVQQKQRQKHFNRQIPAAASLIQTAWRCYAAENPDSSTWKIYIRKA                                                                                                    | 399 |
| Equine 4           | 01  | SRSHAL | LSPSPKPKKSAMVKKKKFKLDKDNGVSPGEKTLTVPHITCDLVSEERRPDHFLVESCDNSVKKSPTLLEVSTAH                                                                                                    | 480 |
| Human 4            | 00  | PRSHTL | JSPSPKPKKSVVVKKKKFKLDKDNGVTPGEKMLTVPHITCD-PPEERRLDHFSVDGYDSSVRKSPTLLEVSMPH                                                                                                    | 478 |
| Equine 4           | 81  | FMRTNS | FAEDLDLEGETLL <mark>A</mark> PITH <mark>V</mark> SQLREHHRATIKVIRRMQYFVAKKKFQQARKPYDVRDVIEQYSQGHLNLMVRIKE                                                                      | 560 |
| Human 4            | 79  | FMRTNS | FAEDLDLEGETLLTPITHISQLREHHRATIKVIRRMQYFVAKKKFQQARKPYDVRDVIEQYSQGHLNLMVRIKE                                                                                                    | 558 |
| Equine 5           | 61  | LQRRLD | DQSIGKPSLFISGSEKSKDRGNNTIGARLNRVEDMVTQLDQRLVLITDMLHQLLSLHHGSPPG-GRPPSGDEAQV                                                                                                   | 639 |
| Human 5            | 59  | LQRRLD | )QSIGKPSLFISVSEKSKDRGSNTIGARLNRVEDKVTQLDQRLALITDMLHQLLSLHGGSTPGSGGPPREGGAHI                                                                                                   | 638 |
| Equine 6           | 40  | VQPCG- | -GGSINPELFLPSNALPTYEQLTVPHRGPDEGS 676                                                                                                                                         |     |
| Human 6            | 39  | TQPCGS | GGSVDPELFLPSNTLPTYEQLTVPRRGPDEGS 676                                                                                                                                          |     |

Figure 9: A protein BLAST without any marking only indicating where there are differences in amino acids.

# Apendix III KCNH2

| Score<br>5055 b<br>Query | its(273 | Expect<br>7) 0.0<br>ATGCCGGTGCGGAGGGGCCA | Identities<br>3233/3480(93%)<br>CGTCGCGCCGCAGAACACCTTCCT | Gaps<br>3/3480(0%)<br>GGACACCATCATCCGC | Strand<br>Plus/Plus |
|--------------------------|---------|------------------------------------------|----------------------------------------------------------|----------------------------------------|---------------------|
| Sbjct                    | 1       | ATGCCGGTGCGGAGGGGCCA                     | CGTCGCGCCGCAGAACACCTTCCT                                 |                                        | 60                  |
| Query                    | 61      | AAGTTTGAGGGCCAGAGCCG                     | CAAGTTCATTATCGCCAACGCTCG                                 | GGTGGAGAACTGCGCC                       | 120                 |
| Sbjct                    | 61      | AAGTTTGAGGGCCAGAGCCG                     | TAAGTTCATCATCGCCAACGCTCG                                 | GGTGGAGAACTGCGCC                       | 120                 |
| Query                    | 121     | GTCATCTACTGCAACGACGG                     | CTTCTGCGAGCTGTGCGGCTACTC                                 | GCGGGCCGAGGTGATG                       | 180                 |
| Sbjct                    | 121     | GTCATCTACTGCAACGACGG                     | CTTCTGCGAGCTGTGCGGCTACTC                                 | GCGGGCCGAGGTGATG                       | 180                 |
| Query                    | 181     | CAGCGGCCCTGCACCTGCGA                     | CTTCCTGCACGGgccgcgcacgca                                 |                                        | 240                 |
| Sbjct                    | 181     | CAGCGACCCTGCACCTGCGA                     | CTTCCTGCACGGGCCGCGCACGCA                                 | GCGCCGCGCTGCCGCG                       | 240                 |
| Query                    | 241     | cagatcgcgcaGGCCTTGCT                     | GGGCGCCGAGGAGCGCAAAGTGGA                                 | GATCTCCTTCTACCGG                       | 300                 |
| Sbjct                    | 241     | CAGATCGCGCAGGCACTGCT                     | GGGCGCCGAGGAGCGCAAAGTGGA                                 | AATCGCCTTCTACCGG                       | 300                 |
| Query                    | 301     | AAGGATGGGAGCTGCTTCCT                     | GTGCCTGGTGGATGTGGTGCCCGT                                 | GAAGAACGAGGATGGG                       | 360                 |
| Sbjct                    | 301     | AAAGATGGGAGCTGCTTCCT                     | ATGTCTGGTGGATGTGGTGCCCGT                                 | GAAGAACGAGGATGGG                       | 360                 |
| Query                    | 361     | GCTGTCATCATGTTCATCCT                     |                                                          | GGACATGGTGGGGTCC                       | 420                 |
| Sbjct                    | 361     | GCTGTCATCATGTTCATCCT                     | CAATTTCGAGGTGGTGATGGAGAA                                 | GGACATGGTGGGGTCC                       | 420                 |
| Query                    | 421     | CCGGCCCGGGACACCAATCA                     | CCGTGGCCCCCCCCTAGCTGGCT                                  | GGCCACAGGTCGGGCC                       | 480                 |
| Sbjct                    | 421     | CCGGCTCATGACACCAACCA                     | CCGGGGCCCCCCCACCAGCTGGCT                                 | GGCCCCAGGCCGCGCC                       | 480                 |
| Query                    | 481     | AAGACCTTCCGCCTGAAGTT                     | GCCTGCGCTGCTGGCCTTGACAGC                                 | GCGGGAGTCGACAGTG                       | 540                 |
| Sbjct                    | 481     | AAGACCTTCCGCCTGAAGCT                     | GCCCGCGCTGCTGGCGCTGACGGC                                 | CCGGGAGTCGTCGGTG                       | 540                 |
| Query                    | 541     | CGGCCAGGTGGCGCGGGCAG                     | CACGGGGGCCCCCGGGGCTGTGGT                                 | GGTGGACGTGGACCTG                       | 600                 |
| Sbjct                    | 541     | CGGTCGGGCGGCGCGGGCGG                     | CGCGGGCGCCCCGGGGGCCGTGGT                                 | GGTGGACGTGGACCTG                       | 600                 |
| Query                    | 601     | ACGCCTGCGGCGCCCAGCAG                     | CGAGTCGCTGGCCCTGGACGAGGT                                 | GACAGCCATGGACAAC                       | 660                 |
| Sbjct                    | 601     | ACGCCCGCGGCACCCAGCAG                     | CGAGTCGCTGGCCCTGGACGAAGT                                 | GACAGCCATGGACAAC                       | 660                 |
| Query                    | 661     | CACGTGGCGGGGGCTTGGGCC                    | GGCGGAAGAGCGCCGCGCGCGCTGGT                               | GGGCCCCGGCTCGCCG                       | 720                 |
| Sbjct                    | 661     | CACGTGGCAGGGCTCGGGCC                     | CGCGGAGGAGCGGCGTGCGCTGGT                                 | GGGTCCCGGCTCTCCG                       | 720                 |
| Query                    | 721     | CCCGCCTGTGCGCCCATCCC                     | GCACCCGTCACCCGGGCCCACAG                                  | CCTCAACCCCGACGCC                       | 780                 |
| Sbjct                    | 721     | CCCCGCAGCGCGCCCGGCCA                     | GCTCCCATCGCCCCGGGCGCGCACAG                               | CCTCAACCCCGACGCC                       | 780                 |
| Query                    | 781     |                                          | GGCCCGGACACGCTCCCGGGAGAG                                 | CTGTGCCAGCGTGCGC                       | 840                 |
| Sbjct                    | 781     | TCGGGCTCCAGCTGCAGCCT                     | GGCCCGGACGCGCTCCCGAGAAAG                                 | CTGCGCCAGCGTGCGC                       | 840                 |
| Query                    | 841     | CGCGCCTCATCAGCGGATGA                     | CATCGAGGCCATGCGCACCGG                                    | GCTGCCCCCACCGCCA                       | 897                 |
| Sbjct                    | 841     | CGCGCCTCGTCGGCCGACGA                     | CATCGAGGCCATGCGCGCCGGGGI                                 | GCTGCCCCCGCCACCG                       | 900                 |

| Query | 898  | CGCCATGCCAGCACAGGGGCCATGCACCCCTGCGCAGCGGCCTGCTTAACTCCACATCA   | 957  |
|-------|------|---------------------------------------------------------------|------|
| Sbjct | 901  | CGCCACGCCAGCACCGGGGCCATGCACCCACTGCGCAGCGGCTTGCTCAACTCCACCTCG  | 960  |
| Query | 958  | GATTCGGACCTCGTGCGCTACCGCACCATTAGCAAGATTCCCCCAAATCACCCTCAACTT  | 1017 |
| Sbjct | 961  | GACTCCGACCTCGTGCGCTACCGCACCATTAGCAAGATTCCCCCAAATCACCCTCAACTTT | 1020 |
| Query | 1018 | GTGGACCTCAAGGGCGACCCCTTCCTGGCTTCGCCCACCAGTGACCGGGAGATCATAGCA  | 1077 |
| Sbjct | 1021 | GTGGACCTCAAGGGCGACCCCTTCTTGGCTTCGCCCACCAGTGACCGTGAGATCATAGCA  | 1080 |
| Query | 1078 | CCCAAGATAAAGGAGCGGACCCACAATGTCACCGAGAAGGTCACCCAGGTCCTGTCTCTG  | 1137 |
| Sbjct | 1081 | CCTAAGATAAAGGAGCGAACCCACAATGTCACTGAGAAGGTCACCCAGGTCCTGTCCCTG  | 1140 |
| Query | 1138 | GGTGCTGATGTGCTGCCGGAGTACAAGCTGCAGGCGCCACGCATCCACCGCTGGACCATC  | 1197 |
| Sbjct | 1141 | GGCGCCGACGTGCTGCCTGAGTACAAGCTGCAGGCACCGCGCATCCACCGCTGGACCATC  | 1200 |
| Query | 1198 | CTGCACTACAGCCCCTTCAAGGCCGTGTGGGACTGGCTCATCCTGCTGGTGGTCATCTAC  | 1257 |
| Sbjct | 1201 | CTGCATTACAGCCCCTTCAAGGCCGTGTGGGACTGGCTCATCCTGCTGGTCATCTAC     | 1260 |
| Query | 1258 | ACGGCCGTCTTCACGCCTACTCCGGCTGCCTTCCTGCTGAAGGAGAGGGCGCCC        | 1317 |
| Sbjct | 1261 | ACGGCTGTCTTCACACCCTACTCGGCTGCCTTCCTGCTGAAGGAGGCCGGAAGAAGGCCCG | 1320 |
| Query | 1318 | CCGGCCACCGACTGTGGCTATGCCTGCCAGCCCTGGCAGTGGTGGACCTCATCGTGGAT   | 1377 |
| Sbjct | 1321 | CCTGCTACCGAGTGTGGCTACGCCTGCCAGCCGCTGGCTG                      | 1380 |
| Query | 1378 | ATCATGTTCATCGTGGACATCCTCATCAACTTCCGCACCACCTATGTCAATGCCAACGAG  | 1437 |
| Sbjct | 1381 | ATCATGTTCATTGTGGACATCCTCATCAACTTCCGCACCACCTACGTCAATGCCAACGAG  | 1440 |
| Query | 1438 | GAGGTGGTCAGCCACCCTGGCCGCATCGCCGTCCACTACTTCAAGGGCTGGTTCCTCATC  | 1497 |
| Sbjct | 1441 | GAGGTGGTCAGCCACCCGGCCGCATCGCCGTCCACTACTTCAAGGGCTGGTTCCTCATC   | 1500 |
| Query | 1498 | GACATGGTGGCTGCCATCCCCTTTGACCTGCTCATCTTCGGTTCTGGCTCTGAGGAGCTG  | 1557 |
| Sbjct | 1501 | GACATGGTGGCCGCCATCCCCTTCGACCTGCTCATCTTCGGCTCTGGCTCTGAGGAGCTG  | 1560 |
| Query | 1558 | ATCGGGCTCCTGAAGACGGCGCGGCGGCTGCTGCGACTGGTGCGCGCGC             | 1617 |
| Sbjct | 1561 | ATCGGGCTGCTGAAGACTGCGCGGCGGCTGCTGCGGCGCGGGGGGGG               | 1620 |
| Query | 1618 | CGCTACTCGGAGTACGGGGCAGCGGTGCTCTTCCTGCTCATGTGCACCTTTGCGCTCATC  | 1677 |
| Sbjct | 1621 | CGCTACTCAGAGTACGGCGCGGCCGTGCTGTTCTTGCTCATGTGCACCTTTGCGCTCATC  | 1680 |
| Query | 1678 | GCGCACTGGCTGGCTTGCATCTGGTACGCCATCGGCAACATGGAGCAGCCGCACATGGAC  | 1737 |
| Sbjct | 1681 | GCGCACTGGCTAGCCTGCATCTGGTACGCCATCGGCAACATGGAGCAGCCACACATGGAC  | 1740 |
| Query | 1738 | TCCCGCATCGGCTGGCTGCACAACCTGGGCGACCAGATCGGCAAGCCCTACAACAGCAGT  | 1797 |
| Sbjct | 1741 | TCACGCATCGGCTGGCTGCACAACCTGGGCGACCAGATAGGCAAACCCTACAACAGCAGC  | 1800 |
| Query | 1798 | GGCCTGGGTGGCCCGTCCATCAAGGACAAGTATGTCACGGCCCTCTACTTCACCTTCAGC  | 1857 |
| Sbjct | 1801 | GGCCTGGGCGGCCCCTCCATCAAGGACAAGTATGTGACGGCGCTCTACTTCACCTTCAGC  | 1860 |

| Query | 1858 | AGCCTCACTAGCGTGGGCTTCGGCAATGTCTCCCCCAACACCAACTCAGAGAAGATCTTC  | 1917 |
|-------|------|---------------------------------------------------------------|------|
| Sbjct | 1861 | AGCCTCACCAGTGTGGGCTTCGGCAACGTCTCTCCCAACACCAACTCAGAGAAGATCTTC  | 1920 |
| Query | 1918 | TCCATTTGTGTCATGCTCATTGGCTCCCTCATGTACGCCAGCATCTTTGGCAACGTGTCA  | 1977 |
| Sbjct | 1921 | TCCATCTGCGTCATGCTCATTGGCTCCCTCATGTATGCTAGCATCTTCGGCAACGTGTCG  | 1980 |
| Query | 1978 | GCCATCATCCAGCGGCTATACTCGGGCACAGCCCGCTACCACACGCAAATGCTCCGGGTG  | 2037 |
| Sbjct | 1981 | GCCATCATCCAGCGGCTGTACTCGGGCACAGCCCGCTACCACACAGATGCTGCGGGTG    | 2040 |
| Query | 2038 | CGGGAGTTCATCCGCTTCCACCAGATCCCTAACCCGCTGCGCCAGCGCCTTGAGGAGTAT  | 2097 |
| Sbjct | 2041 | CGGGAGTTCATCCGCTTCCACCAGATCCCCAATCCCCTGCGCCAGCGCCTCGAGGAGTAC  | 2100 |
| Query | 2098 | TTCCAGCACGCCTGGTCCTACACCAACGGCATCGACATGAACGCGGTGCTGAAGGGCTTC  | 2157 |
| Sbjct | 2101 | TTCCAGCACGCCTGGTCCTACACCAACGGCATCGACATGAACGCGGTGCTGAAGGGCTTC  | 2160 |
| Query | 2158 | CCGGAGTGCCTGCAGGCAGACATCTGCCTGCACCTGAACCGCTCGCT               | 2217 |
| Sbjct | 2161 | CCTGAGTGCCTGCAGGCTGACATCTGCCTGCACCTGAACCGCTCACTGCTGCAGCACTGC  | 2220 |
| Query | 2218 | AAGCCCTTCCGAGGGGCCACCAAAGGCTGCCTGCGGGCCCTGGCCATGAAGTTCAAGACG  | 2277 |
| Sbjct | 2221 | AAACCCTTCCGAGGGGCCACCAAGGGCTGCCTTCGGGCCCTGGCCATGAAGTTCAAGACC  | 2280 |
| Query | 2278 | ACACACGCACCGCCAGGGGACACGCTGGTGCACGCCGGGGACCTGCTCACCGCCCTCTAC  | 2337 |
| Sbjct | 2281 | ACACATGCACCGCCAGGGGACACACTGGTGCATGCTGGGGGACCTGCTCACCGCCCTGTAC | 2340 |
| Query | 2338 | TTCATCTCCCGGGGCTCCATCGAGATCCTGCGGGGGCGATGTCGTCGTGGCCATCCTGGGG | 2397 |
| Sbjct | 2341 | TTCATCTCCCGGGGCTCCATCGAGATCCTGCGGGGCGACGTCGTCGTGGCCATCCTGGGG  | 2400 |
| Query | 2398 | AAGAATGACATCTTCGGAGAGCCTCTGAACCTGTATGCGCGGCCTGGCAAGTCCAATGGG  | 2457 |
| Sbjct | 2401 | AAGAATGACATCTTTGGGGAGCCTCTGAACCTGTATGCAAGGCCTGGCAAGTCGAACGGG  | 2460 |
| Query | 2458 | GATGTGCGGGCCCTCACCTACTGCGACCTGCACAAGATCCACCGGGACGACCTGCTGGAG  | 2517 |
| Sbjct | 2461 | GATGTGCGGGCCCTCACCTACTGTGACCTACACAAGATCCATCGGGACGACCTGCTGGAG  | 2520 |
| Query | 2518 | GTGCTGGACATGTACCCCGAGTTCTCCGACCACTTCTGGTCCAGCCTGGAGATCACCTTC  | 2577 |
| Sbjct | 2521 | GTGCTGGACATGTACCCTGAGTTCTCCGACCACTTCTGGTCCAGCCTGGAGATCACCTTC  | 2580 |
| Query | 2578 | AACCTTCGAGACACCAACATGATCCCCGGCTCTCCCGGCAGCACAGAGCTGGAGGGCGGC  | 2637 |
| Sbjct | 2581 | AACCTGCGAGATACCAACATGATCCCGGGCTCCCCCGGCAGTACGGAGTTAGAGGGTGGC  | 2640 |
| Query | 2638 | TTCAACCGGCAACGCAAGCGCAAGCTGTCCTTCCGCAGACGCACCGACAAGGACCCGGAA  | 2697 |
| Sbjct | 2641 | TTCAGTCGGCAACGCAAGCGCAAGTTGTCCTTCCGCAGGCGCACGGACAAGGACACGGAG  | 2700 |
| Query | 2698 | CAgccaggggaggtgtcggccttggggccgggccgggggggg                    | 2757 |
| Sbjct | 2701 | CAGCCAGGGGAGGTGTCGGCCTTGGGGCCGGGCCGGGCGGG                     | 2760 |
| Query | 2758 | ggccggccagggggcccgtggggggAAAGCCCGTCCAGTGGCCCCTCCAGCCCTGAGAGC  | 2817 |
| Sbjct | 2761 | GGCCGGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                       | 2820 |

| Query | 2818 | AGTGAGGATGAGGGCCCAGGCCGCAGCTCCAGCCCCTCCGCCTGGTGCCCTTCTCCAGC   | 2877 |
|-------|------|---------------------------------------------------------------|------|
| Sbjct | 2821 | AGTGAGGATGAGGGCCCAGGCCGCAGCTCCAGCCCCTCCGCCTGGTGCCCTTCTCCAGC   | 2880 |
| Query | 2878 | CCCAGGCCCCCGGAGAGCCGCCGGGTGGGGAGCCCCTGATTGAGGACTGCGAGAAGAGC   | 2937 |
| Sbjct | 2881 | CCCAGGCCCCCGGAGAGCCGCCGGGTGGGGAGCCCCTGATGGAGGACTGCGAGAAGAGC   | 2940 |
| Query | 2938 | AGTGACACATGTAACCCGCTGTCAGGCGCCTTCTCGGGAGTGTCCAACATCTTCAGCTTC  | 2997 |
| Sbjct | 2941 | AGCGACACTTGCAACCCCCTGTCAGGCGCCTTCTCAGGAGTGTCCAACATTTTCAGCTTC  | 3000 |
| Query | 2998 | TGGGGGGATAGTCGGGGCCGCCAGTACCAGGAGCTGCCTCGCTGccccgcccccgccccc  | 3057 |
| Sbjct | 3001 | TGGGGGGACAGTCGGGGCCGCCAGTACCAGGAGCTCCCTCGATGCCCCGCCCCCACCCCC  | 3060 |
| Query | 3058 | AGCCTCCTCAACATCCCTCTTTCCAGCCCTGGCCGGCGGCCGGGGGGGG             | 3117 |
| Sbjct | 3061 | AGCCTCCTCAACATCCCCCTCTCCAGCCCGGGTCGGCGGCCCCGGGGCGACGTGGAGAGC  | 3120 |
| Query | 3118 | AGGCTGGACGCCCTTCAGAGGCAGCTTAACAGGCTGGAGACGCGGCTGAGTGCAGACATG  | 3177 |
| Sbjct | 3121 | AGGCTGGATGCCCTCCAGCGCCAGCTCAACAGGCTGGAGACCCGGCTGAGTGCAGACATG  | 3180 |
| Query | 3178 | GCCACCGTCCTGCAGCTACTGCAGAGACAGATGACACTGGTCCCTCCAGCCTACAGTGCT  | 3237 |
| Sbjct | 3181 | GCCACTGTCCTGCAGCTGCTACAGAGGCAGATGACGCTGGTCCCGCCCG             | 3240 |
| Query | 3238 | GTGACCACCCCGGGGCCCGGCCCCACCTCCACCTCCCCTCTCCTGCCTG             | 3297 |
| Sbjct | 3241 | GTGACCACCCCGGGGCCTGGCCCCACTTCCACATCCCCGCTGTTGCCCGTCAGCCCCCTC  | 3300 |
| Query | 3298 | CCCACTCTCACCCTGGATTCGCTTTCTCAGGTTTCCCAGTTCATGGCGTGCGAGGAGCTC  | 3357 |
| Sbjct | 3301 | CCCACCCTCACCTTGGACTCGCTTTCTCAGGTTTCCCAGTTCATGGCGTGTGAGGAGCTG  | 3360 |
| Query | 3358 | CCTCCGGGGGCCCCAGAGCTTCCCCAAGACGGCCCCACTCGACGCCTCTCCCTGCCGGGC  | 3417 |
| Sbjct | 3361 | CCCCCGGGGGGCCCCAGAGCTTCCCCAAGAAGGCCCCACACGACGCCTCTCCCTACCGGGC | 3420 |
| Query | 3418 | CAGCTGGGGGGCCCTCACCTCCCAGCCCTGCACAGACACGGCTCAGACCCGGGCAGTTAG  | 3477 |
| Sbjct | 3421 | CAGCTGGGGGGCCCTCACCTCCCAGCCCTGCACAGACACGGCTCGGACCCGGGCAGTTAG  | 3480 |

#### **Protein BLAST**

The TMHMM gave only 4 highly probable helices both for human and equine proteins. There were no dissimilarities between the first and the last trans membrane helix in the entire segment, 408bp to 661bp so the graphic is left out.

| Score<br>2208 bit | ts(5721 | <b>Expect</b> .) 0.0 | Method<br>Compositional matrix adjust.                   | Identities<br>1138/1159(98%)         | <b>Positives</b><br>1145/1159(98 <sup>0</sup> | Gaps<br>%) 1/1159(0%) |
|-------------------|---------|----------------------|----------------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------|
| Query             | 1       | MPVRRGHV<br>MPVRRGHV | VAPQNTFLDTIIRKFEGQSRKFIIAN<br>VAPQNTFLDTIIRKFEGQSRKFIIAN | ARVENCAVIYCNDGFC<br>ARVENCAVIYCNDGFC | ELCGYSRAEVM<br>ELCGYSRAEVM                    | 60                    |
| Sbjct             | 1       | MPVRRGHV             | YAPQNTFLDTIIRKFEGQSRKFIIAN                               | ARVENCAVIYCNDGFC                     | ELCGYSRAEVM                                   | 60                    |
| Query             | 61      | QRPCTCDF<br>QRPCTCDF | LHGPRTQRRAAAQIAQALLGAEERK<br>LHGPRTQRRAAAQIAQALLGAEERK   | VEISFYRKDGSCFLCL<br>VEI+FYRKDGSCFLCL | VDVVPVKNEDG<br>VDVVPVKNEDG                    | 120                   |
| Sbjct             | 61      | QRPCTCDF             | LHGPRTQRRAAAQIAQALLGAEERK                                | VE <mark>I</mark> AFYRKDGSCFLCL      | VDVVPVKNEDG                                   | 120                   |
| Query             | 121     | AVIMFILN<br>AVIMFILN | IFEVVMEKDMVGSPARDTNHRGPPTS<br>IFEVVMEKDMVGSPA DTNHRGPPTS | WLATGRAKTFRLKLPA<br>WLA GRAKTFRLKLPA | LLALTARESTV<br>LLALTARES+V                    | 180                   |
| Sbjct             | 121     | AVIMFILN             | IFEVVMEKDMVGSPAHDTNHRGPPTS                               | WLAPGRAKTFRLKLPA                     | LLALTARESSV                                   | 180                   |

| Query | 181  | RPGGAGSTGAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSP                                                                 | 240  |
|-------|------|------------------------------------------------------------------------------------------------------------------------------|------|
| Sbjct | 181  | R GGAG GAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSP<br>RSGGAGGAGAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSP  | 240  |
| Query | 241  | PACAPIPHPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRTG-LPPPP                                                                 | 299  |
| Sbjct | 241  | PRSAPGQLPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRAGVLPPPP                                                                 | 300  |
| Query | 300  | RHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIA<br>RHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIA | 359  |
| Sbjct | 301  | RHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIA                                                                 | 360  |
| Query | 360  | PKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTILHYSPFKAVWDWLILLLVIY<br>PKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTILHYSPFKAVWDWLILLLVIY | 419  |
| Sbjct | 361  | PKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTILHYSPFKAVWDWLILLLVIY                                                                 | 420  |
| Query | 420  | TAVFTPYSAAFLLKETEEGPPATDCGYACQPLAVVDLIVDIMFIVDILINFRTTYVNANE<br>TAVFTPYSAAFLLKETEEGPPAT+CGYACOPLAVVDLIVDIMFIVDILINFRTTYVNANE | 479  |
| Sbjct | 421  | TAVFTPYSAAFLLKETEEGPPATECGYACQPLAVVDLIVDIMFIVDILINFRTTYVNANE                                                                 | 480  |
| Query | 480  | EVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLD<br>EVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLD | 539  |
| Sbjct | 481  | EVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLD                                                                 | 540  |
| Query | 540  | RYSEYGAAVLFLLMCTFALIAHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSS<br>RYSEYGAAVLFLLMCTFALIAHWLACIWYAIGNMEOPHMDSRIGWLHNLGDOIGKPYNSS | 599  |
| Sbjct | 541  | RYSEYGAAVLFLLMCTFALIAHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSS                                                                 | 600  |
| Query | 600  | GLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVS<br>GLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVS | 659  |
| Sbjct | 601  | GLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVS                                                                 | 660  |
| Query | 660  | AIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGF<br>AIIORLYSGTARYHTOMLRVREFIRFHOIPNPLRORLEEYFOHAWSYTNGIDMNAVLKGF | 719  |
| Sbjct | 661  | AIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGF                                                                 | 720  |
| Query | 720  | PECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALY<br>PECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALY | 779  |
| Sbjct | 721  | PECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALY                                                                 | 780  |
| Query | 780  | FISRGSIEILRGDVVVAILGKNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLE<br>FISRGSIEILRGDVVVAILGKNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLE | 839  |
| Sbjct | 781  | FISRGSIEILRGDVVVAILGKNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLE                                                                 | 840  |
| Query | 840  | VLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGGFNRQRKRKLSFRRRTDKDPE<br>VLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGGF+RORKRKLSFRRRTDKD E | 899  |
| Sbjct | 841  | VLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGGFSRQRKRKLSFRRTDKDTE                                                                  | 900  |
| Query | 900  | QPGEVSALGPGRAGAGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPLRLVPFSS<br>OPGEVSALGPGRAGAGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPLRLVPFSS | 959  |
| Sbjct | 901  | QPGEVSALGPGRAGAGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPLRLVPFSS                                                                 | 960  |
| Query | 960  | PRPPGEPPGGEPLIEDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGRQYQELPRCPAPAP<br>PRPPGEPPGGEPL+EDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGROYOELPRCPAP   | 1019 |
| Sbjct | 961  | PRPPGEPPGGEPLMEDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGRQYQELPRCPAPTP                                                                 | 1020 |
| Query | 1020 | SLLNIPLSSPGRRPRGDVESRLDALQRQLNRLETRLSADMATVLQLLQRQMTLVPPAYSA<br>SLLNIPLSSPGRRPRGDVESRLDALOROLNRLETRLSADMATVLOLLOROMTLVPPAYSA | 1079 |
| Sbjct | 1021 | SLLNIPLSSPGRRPRGDVESRLDALQRQLNRLETRLSADMATVLQLLQRQMTLVPPAYSA                                                                 | 1080 |
| Query | 1080 | VTTPGPGPTSTSPLLPVSPIPTLTLDSLSQVSQFMACEELPPGAPELPQDGPTRRLSLPG<br>VTTPGPGPTSTSPLLPVSP+PTLTLDSLSQVSQFMACEELPPGAPELPQ+GPTRRLSLPG | 1139 |
| Sbjct | 1081 | VTTPGPGPTSTSPLLPVSPLPTLTLDSLSQVSQFMACEELPPGAPELPQEGPTRRLSLPG                                                                 | 1140 |

| Equine           | 1    | ${\tt MPVRRGHVAPQNTFLDTIIRKFEGQSRKFIIANARVENCAVIYCNDGFCELCGYSRAEVMQRPCTCDFLHGPRTQRRAAA}$                                        | 80   |
|------------------|------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Human            | 1    | ${\tt MPVRRGHVAPQNTFLDTIIRKFEGQSRKFIIANARVENCAVIYCNDGFCELCGYSRAEVMQRPCTCDFLHGPRTQRRAAA}$                                        | 80   |
| Sbj              |      |                                                                                                                                 |      |
| Equine           | 81   | $\verb"QIAQALLGAEERKVEISFYRKDGSCFLCLVDVVPVKNEDGAVIMFILNFEVVMEKDMVGSPARDTNHRGPPTSWLATGRA"$                                       | 160  |
| Human            | 81   | $\verb"QIAQALLGAEERKVEIAFYRKDGSCFLCLVDVVPVKNEDGAVIMFILNFEVVMEKDMVGSPAHDTNHRGPPTSWLAPGRA$                                        | 160  |
|                  |      |                                                                                                                                 |      |
| Equine           | 161  | $\tt KTFRLKLPALLALTARES {\tt TVRP} {\tt GGAG} {\tt ST} {\tt GAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSP$               | 240  |
| Human            | 161  | $\tt KTFRLKLPALLALTARES {\tt SVR}{\tt S} {\tt GGAG} {\tt GA} {\tt GAPGAVVV} {\tt VDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSP$ | 240  |
|                  |      |                                                                                                                                 |      |
| Equine           | 241  | PACAPIPHPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRTG-LPPPPRHASTGAMHPLRSGLLNSTS                                                | 319  |
| Human            | 241  | PRSAPGQLPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRAGVLPPPPRHASTGAMHPLRSGLLNSTS                                                | 320  |
|                  |      |                                                                                                                                 |      |
| Equine           | 320  | DSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIAPKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTI                                                | 399  |
| Human            | 321  | DSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIAPKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTI                                                | 400  |
| E au dia a       | 400  | I UVODEVALENDATI TI TI TUTVTALIETDVOA SET TVETERODDATDOOVACADI ALEDI TUDIVETUDI TI TVEDTVO DIANE                                | 470  |
| Equine           | 400  |                                                                                                                                 | 4/9  |
| Tuman            | 401  | LHISPERAVWDWLILLLVIIIAVEIPISAAFLLKEIEEGPPAIECGIACQPLAVVDLIVDIMEIVDILINERIIIVNANE                                                | 460  |
| Equine           | 480  | EVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLDRYSEYGAAVLFLLMCTFALI                                                | 559  |
| Human            | 481  | EVVSHPGRTAVHYFKGWFLTDMVAATPFDLLTFGSGSEELTGLLKTARLERLVRVARKLDRYSEYGAAVLFLLMCTFALT                                                | 560  |
|                  |      |                                                                                                                                 |      |
| Equine           | 560  | AHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSSGLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIF                                                | 639  |
| Human            | 561  | AHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSSGLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIF                                                | 640  |
|                  |      |                                                                                                                                 |      |
| Equine           | 640  | ${\tt SICVMLIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGF}$                                        | 719  |
| Human            | 641  | ${\tt SICVMLIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGF}$                                        | 720  |
|                  |      |                                                                                                                                 |      |
| Equine           | 720  | PECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALYFISRGSIEILRGDVVVAILG                                                | 799  |
| Human            | 721  | PECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALYFISRGSIEILRGDVVVAILG                                                | 800  |
|                  |      |                                                                                                                                 |      |
| Equine           | 800  | KNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLEVLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGG                                                | 879  |
| Human            | 801  | KNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLEVLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGG                                                | 880  |
| Equipo           | 960  | PD DDGF DDGGF DI TEDGFKSSDTCHDI SGAFSGVSNIFSFWGDSDGDOVOFI DDCDADADSI I NI DI SSDGDD DDGDVFS                                     | 1030 |
| Equille<br>Human | 961  | DD DDGE DDGGE DI MEDGENSSDI GNEDSGE SGAFSGASSNI ESEWGDSDGDOVOFI DDGDA DTDSI I NI DI SSDGDD DDGDAFS                              | 1035 |
| inannann         | 501  | PREPOLEFOGLELMEDCERSSDICAELSONICISEMODSKORVIVELERCERETESLEATELSSFORRERODVES                                                     | 1040 |
| Fauine           | 1040 | RLDALOROLNRLETRLSADMATVLOLLOROMTLVPPAYSAVTTPGPGPTSTSPLLPVSPIPTLTLDSLSOVSOFMACEEL                                                | 1119 |
| Human            | 1041 | RLDALOROLNRLETRLSADMATVLOLLOROMTLVPPAYSAVTTPGPGPTSTSPLLPVSPLPTLTLDSLSOVSOFMACEEL                                                | 1120 |
|                  |      |                                                                                                                                 |      |
| Equine           | 1120 | PPGAPELPQDGPTRRLSLPGQLGALTSQPLHRHGSDPGS 1158                                                                                    |      |
| Human            | 1121 | PPGAPELPQEGPTRRLSLPGQLGALTSQPLHRHGSDPGS 1159                                                                                    |      |
|                  |      |                                                                                                                                 |      |

Figure 10: A protein BLAST without any marking only indicating where there are differences in amino acids.

# **Apendix IV KCNE1**

| Score    |        | Expect Ide               | entities              | Gaps            | Strand    |
|----------|--------|--------------------------|-----------------------|-----------------|-----------|
| 399 bits | s(216) | 6e-116 33                | 3/391(85%)            | 2/391(0%)       | Plus/Plus |
| Query    | 1      | ATGATCCTGTCTAACACCACAGCT | GTGATGCCCTTTCTGGCCAAG | CTGTGGCAGGGGACA | 60        |
| Sbjct    | 1      | ATGATCCTGTCTAACACCACAGCG | GTGACGCCCTTTCTGACCAAG | CTGTGGCAGGAGACA | 60        |
| Query    | 61     | GTTCAACAGGGCAGCAACACGTCT | AGCCCAGCCCGCAGGTCCCCC | AGCAACGAG-GACGG | 119       |
| Sbjct    | 61     | GTTCAGCAGGGTGGCAACATGTCG | GGCCTGGCCCGCAGGTCCCCC | CGCAGC-AGTGACGG | 119       |
| Query    | 120    | CAAGCTTGAGGCACTCTACATTCT | CATGGTGCTTGGCTTCTTCGG | CTTCTTCACCCTGGG | 179       |
| Sbjct    | 120    | CAAGCTGGAGGCCCTCTACGTCCT | CATGGTACTGGGATTCTTCGG | CTTCTTCACCCTGGG | 179       |
| Query    | 180    | CATCATGCTGAGTTACATCCGCTC |                       | CGACCCATTCAATGT | 239       |
| Sbjct    | 180    | CATCATGCTGAGCTACATCCGCTC | CAAGAAGCTGGAGCACTCGAA | CGACCCATTCAACGT | 239       |
| Query    | 240    | GTACATCGAGTCTGACACCTGGCA |                       | CCAGTCCCGGATTCT | 299       |
| Sbjct    | 240    | CTACATCGAGTCCGATGCCTGGCA | AGAGAAGGACAAGGCCTATGT | CCAGGCCCGGGTCCT | 299       |
| Query    | 300    | GGAGAGCTACAGGGCGTGTTATGT | CATTGAAAACGAGCTGGCTGT | GGAACAGCCAGGCAC | 359       |
| Sbjct    | 300    | GGAGAGCTACAGGTCGTGCTATGT | CGTTGAAAACCATCTGGCCAT | AGAACAACCCAACAC | 359       |
| Query    | 360    | ATACCTTCCTGAGATGGACCCTTC | CATCATGA 390          |                 |           |
| Sbjct    | 360    | ACACCTTCCTGAGACGAAGCCTTC | CCCCATGA 390          |                 |           |

#### **Protein BLAST**

| Score         | Expect Method                                                                                 | Identities                                                                         | Positives                                | Gaps      |
|---------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|-----------|
| 222 bits(566) | ) 5e-80 Compositional matrix adjust.                                                          | 103/128(80%)                                                                       | 112/128(87%)                             | 0/128(0%) |
| Query 1       | MILSNTTAVMPFLAKLWQGTVQQGSNTSSPARRS<br>MILSNTTAV PFL KLWQ TVQQG N S ARRS                       | SP <mark>S</mark> N <mark>E</mark> DGKLEA <mark>LYILMV</mark><br>SP + DGKLEALY+LMV | <mark>LGFFGFFTLG</mark> 60<br>LGFFGFFTLG |           |
| Sbjct 1       | MILSNTTAVTPFLTKLWQETVQQGGNM <mark>S</mark> GLARRS                                             | SP <mark>R</mark> S <mark>S</mark> DGKLEALY <mark>V</mark> LMV                     | LGFFGFFTLG 60                            |           |
| Query 61      | IMLSYIRSKKLEHSHDPFNVYIESDTWQEKDKK<br>IMLSYIRSKKLEHS+DPFNVYIESD WQEKDK                         | /FQSRILESYRACYV <mark>I</mark> E<br>/ Q+R+LESYR+CYV+E                              | NELAVEQPGT 120<br>N LA+EQP T             | )         |
| Sbjct 61      | IMLSYIRSKKLEH <mark>S</mark> N <mark>D</mark> PFNVYIES <mark>D</mark> A <mark>W</mark> QEKDKA | YVQA <mark>R</mark> VLESYRSCYV <mark>V</mark> E                                    | NHLAIEQPNT 120                           | )         |
| Query 121     | YLPEMDPS 128<br>+LPE PS                                                                       |                                                                                    |                                          |           |
| Sbjct 121     | HLPETK <mark>P</mark> S 128                                                                   |                                                                                    |                                          |           |

| Equine 1<br>Human 1 | MILSNTTAVMPFLAKLWQGTVQQGSNTSSPARRSPSNEDGKLEALYILMV<br>MILSNTTAVTPFLTKLWQETVQQGGNMSGLARRSPRSSDGKLEALYVLMV | LGFFGFFTLGIMLSYIRSKKLEHS <mark>H</mark> DPFNV<br>LGFFGFFTLGIMLSYIRSKKLEHS <mark>N</mark> DPFNV | 80<br>80 |
|---------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|
| Equine 81           | YIESDTWQEKDKKYFQSRILESYRACYVIENELAVEQPGTYLPEMDPSS                                                        | 129                                                                                            |          |
| Human 81            | YIESDAWQEKDKAYVQARVLESYRSCYVVENHLAIEQPNTHLPETKPSP                                                        | 129                                                                                            |          |

Figure 11: A protein BLAST without any marking only indicating where there are differences in amino acids.

#### **Apendix V KCNE2**

The first 7bp and the last 3bp (turquoise) are putative based on the predicted equine sequence XM\_001494194.1

| <b>Score</b><br>459 bits | s(508) | Expect         Ident           7e-134         325/3 | <b>ities</b><br>372(87%) | <b>Gaps</b><br>0/372(0%) | <b>Strand</b><br>Plus/Plus |
|--------------------------|--------|-----------------------------------------------------|--------------------------|--------------------------|----------------------------|
| Query                    | 1      | ATGCCCACTTTATCCAATTTGACACA                          | GACCCTGGAAGATGTCTTC.     |                          | 60                         |
| SDJCL                    | T      | AIGICIACIIIAICCAAIIICACACA                          | JACGCIGGAAGACGICIIC      | CGAAGGAIIIIIAII          | 00                         |
| Query                    | 61     | ACCTATATGAACAATTGGCGCAGGAA                          | CACGACAGCTGAGCAAGAG      | GCCCTGCAAGCTAAA          | 120                        |
| Sbjct                    | 61     | ACTTATATGGACAATTGGCGCCAGAA                          | CACAACAGCTGAGCAAGAG      | GCCCTCCAAGCCAAA          | 120                        |
| Query                    | 121    | GTGGACGCTGAGAATTTCTACTATGT                          | CATCTTGTACCTTATGGTG      | ATGATTGGAATGTTC          | 180                        |
| Sbjct                    | 121    | GTTGATGCTGAGAACTTCTACTATGT                          | CATCCTGTACCTCATGGTG      | ATGATTGGAATGTTC          | 180                        |
| Query                    | 181    | TCTTTCATCATTGTAGCCATCCTGGT                          | GAGCACGGTGAAATCCAAG      | CGACGAGAACACTCC          | 240                        |
| Sbjct                    | 181    | TCTTTCATCATCGTGGCCATCCTGGT                          | GAGCACTGTGAAATCCAAG      | AGACGGGAACACTCC          | 240                        |
| Query                    | 241    | AACGACCCCTACCACCAGTACATCGT                          | AGAGGACTGGCAAGAGAAA<br>  | TACAGGAGTCAAATT<br>      | 300                        |
| Sbjct                    | 241    | AATGACCCCTACCACCAGTACATTGT.                         | AGAGGACTGGCAGGAAAAG      | TACAAGAGCCAAATC          | 300                        |
| Query                    | 301    | TTGAATCTAGAGGAACCAAAGGCCAC                          | CATCCACAAGAACATTAGT      | GCAACCGAGTTCCAG          | 360                        |
| Sbjct                    | 301    | TTGAATCTAGAAGAATCGAAGGCCAC                          | CATCCATGAGAACATTGGT      | GCGGCTGGGTTCAAA          | 360                        |
| Query                    | 361    | ATGTCGCCT <mark>TGA</mark> 372                      |                          |                          |                            |

Sbjct 361 ATGTCCCCCTGA 372

#### **Protein BLAST**

| Score    |        | Expect                          | Method                                                     | Identities                                           | Positives                               | Gaps         |
|----------|--------|---------------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------|
| 234 bits | s(596) | ) 1e-84                         | Compositional matrix adjust.                               | 110/123(89%)                                         | 117/123(95%                             | %) 0/123(0%) |
| Query    | 1      | MPTLSNI<br>M TLSN               | TQTLEDVFKKIFITYMNNWRRNTTAEQ<br>TOTLEDVF++IFITYM+NWR+NTTAEO | EALQAKVDAENF <mark>YYVII</mark><br>EALOAKVDAENFYYVII | <mark>LYLMVMIGMF</mark> (<br>LYLMVMIGMF | 50           |
| Sbjct    | 1      | MSTLSNF                         | ,<br>TQTLEDVFRRIFITYMDNW <mark>R</mark> QNTTAEQ            | EALQAKVDAENFYYVII                                    | LYLMVMIGMF (                            | 50           |
| Query    | 61     | <mark>SFIIVAI</mark><br>Setivat | LVSTVKSKRREHSNDPYHQYIVEDWQE                                | KYRSQILNLEEPKATII                                    | IKNISATEFQ 1                            | 120          |
| Sbjct    | 61     | SFIIVAI                         | LVSTVKSKRREHSNDPYHQYIVEDWQE                                | KYKSQILNLEESKATIF                                    | HENIG <mark>A</mark> AGFK 1             | 120          |
| Query    | 121    | MSP 12<br>MSP                   | 3                                                          |                                                      |                                         |              |
| Sbjct    | 121    | MSP 12                          | 3                                                          |                                                      |                                         |              |

# Equine 1 XXXLSNLTQTLEDVFKKIFITYMNNWRRNTTAEQEALQAKVDAENFYYVILYLMVMIGMFSFIIVAILVSTVKSKRREHS 80 Human 1 MSTLSNFTQTLEDVFRRIFITYMDNWRQNTTAEQEALQAKVDAENFYYVILYLMVMIGMFSFIIVAILVSTVKSKRREHS 80

| Equine | 81 | NDPYHQYIVEDWQEKYRSQILNLEEPKATIHKNISATEFQMSP | 123 |
|--------|----|---------------------------------------------|-----|
| Human  | 81 | NDPYHQYIVEDWQEKYKSQILNLEESKATIHENIGAAGFKMSP | 123 |

Figure 12: A protein BLAST without any marking only indicating where there are differences in amino acids.